Few-layer Tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties

半导体 共价键 带隙 材料科学 各向异性 各向同性 直接和间接带隙 凝聚态物理 吸收(声学)
作者
Jingsi Qiao,Yuhao Pan,Feng Yang,Cong Wang,Yang Chai,Wei Ji
出处
期刊:arXiv: Materials Science 被引量:14
标识
DOI:10.1016/j.scib.2018.01.010
摘要

Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus (BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears. This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding (CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV (bulk) to indirect 1.17 eV (2L) and four (two) complex, highly anisotropic and layer-dependent hole (electron) pockets in the first Brillouin zone. It also exhibits an extraordinarily high hole mobility (~10$^5$ cm$^2$/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This one-dimension-like few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助MM采纳,获得10
1秒前
儒雅的雁山完成签到 ,获得积分10
2秒前
3秒前
酷波er应助白之玉采纳,获得10
3秒前
4秒前
星辰大海应助临渊采纳,获得10
4秒前
5秒前
5秒前
6秒前
华仔应助星空_采纳,获得10
6秒前
LHL完成签到,获得积分10
6秒前
Akim应助优秀如雪采纳,获得10
6秒前
6秒前
犹豫依丝发布了新的文献求助10
7秒前
8秒前
8秒前
领导范儿应助兴奋的灵采纳,获得10
9秒前
阿秋完成签到,获得积分10
9秒前
嘤嘤怪完成签到,获得积分10
10秒前
在水一方应助栗子鱼采纳,获得10
11秒前
11秒前
superwoman发布了新的文献求助20
11秒前
lalala发布了新的文献求助10
12秒前
Grace0610发布了新的文献求助10
12秒前
znn发布了新的文献求助10
13秒前
15秒前
村医发布了新的文献求助30
16秒前
li完成签到,获得积分20
18秒前
luyao970131发布了新的文献求助10
18秒前
充电宝应助熏悟空采纳,获得10
19秒前
superwoman完成签到,获得积分10
20秒前
21秒前
CodeCraft应助玛卡巴卡采纳,获得10
21秒前
22秒前
24秒前
共享精神应助Grace0610采纳,获得10
24秒前
24秒前
25秒前
火星探险完成签到,获得积分10
25秒前
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842615
求助须知:如何正确求助?哪些是违规求助? 3384669
关于积分的说明 10536580
捐赠科研通 3105212
什么是DOI,文献DOI怎么找? 1710077
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110