Deep learning assisted fast mask optimization

计算机科学 光学接近校正 深度学习 人工智能 扫描仪 平版印刷术 计算光刻 计算机工程 光栅图形 计算机硬件 计算机体系结构 电子工程 多重图案 抵抗 工程类 过程(计算) 纳米技术 材料科学 操作系统 光电子学 图层(电子)
作者
Song Lan,Jiangwei Li,Jun Liu,Yumin Wang,Ke Zhao
标识
DOI:10.1117/12.2297514
摘要

Deep neural networks (DNN) have been widely used in many applications in the past few years. Their capabilities to mimic high-dimensional complex systems make them also attractive for the area of semiconductor engineering, including lithographic mask design. Recent progress of mask writing technologies, including emergent techniques such as multi-beam raster scan mask writers, has made it possible to produce curvilinear masks with essentially "any" shapes. The increased granularity of mask shapes brings enormous advantages and challenges to resolution enhancement techniques (RET) such as optical proximity correction (OPC), Inverse lithography technologies (ILT), and other advanced mask optimization tools. Attempts of replacing the conventional segment based OPC by the ILT and other advanced solutions for full chip mask tapeout have been around for over a decade. Extremely slow mask data total-turnaround time is one of the major blocks. Therefore, its applications have been limited to small clip based applications such as for scanner source optimization, mask optimization only used for hotspot fixing and hierarchical memory designs. In this paper we present a new technique to apply DNN in our newly developed GPU-accelerated mask optimization platform, which reduces the runtime significantly without sacrificing the accuracy and convergence. This new tool combines deep learning, GPU computing platform and advanced optimization algorithms, and provides a fast and accurate solution for mask optimization in the sub-10nm tech nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助ultramantaro采纳,获得30
1秒前
1秒前
2秒前
FashionBoy应助Stranger采纳,获得10
2秒前
3秒前
tuanheqi发布了新的文献求助30
3秒前
envdavid完成签到,获得积分10
3秒前
小桃子完成签到 ,获得积分10
5秒前
无情向梦完成签到,获得积分10
6秒前
xiaoqi完成签到,获得积分10
7秒前
甜橙汁发布了新的文献求助10
7秒前
小于发布了新的文献求助10
7秒前
Y哦莫哦莫完成签到,获得积分10
8秒前
如意的冰双完成签到 ,获得积分10
8秒前
lizhaonian发布了新的文献求助10
8秒前
华仔应助卓妮采纳,获得10
9秒前
白白不读书完成签到 ,获得积分10
10秒前
疯狂的橘子完成签到,获得积分10
12秒前
12秒前
深情安青应助不止夏天采纳,获得30
14秒前
李傲完成签到,获得积分10
14秒前
李富贵儿~发布了新的文献求助10
17秒前
酷波er应助背后易巧采纳,获得10
17秒前
21秒前
脑洞疼应助飞云采纳,获得10
22秒前
小蘑菇应助lizhaonian采纳,获得10
23秒前
李富贵儿~完成签到,获得积分10
23秒前
科目三应助细心的语蓉采纳,获得10
23秒前
张毓完成签到,获得积分20
24秒前
24秒前
25秒前
畅快城发布了新的文献求助10
26秒前
遇上就这样吧应助mix采纳,获得50
27秒前
科研通AI6应助蜗牛茜茜采纳,获得10
28秒前
彭于晏应助我爱背单词采纳,获得10
28秒前
兔子应助清新的火龙果采纳,获得10
28秒前
29秒前
慕青应助小于采纳,获得10
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776841
求助须知:如何正确求助?哪些是违规求助? 4108491
关于积分的说明 12709305
捐赠科研通 3829912
什么是DOI,文献DOI怎么找? 2112722
邀请新用户注册赠送积分活动 1136517
关于科研通互助平台的介绍 1020330