Accumulation of Glassy Poly(ethylene oxide) Anchored in a Covalent Organic Framework as a Solid-State Li+ Electrolyte

聚乙烯 固态 化学 乙烯 电解质 聚合物 氧化物 无机化学 化学工程 环氧乙烷 共价键 高分子化学 物理化学 有机化学 电极 共聚物 催化作用 工程类
作者
Gen Zhang,You‐lee Hong,Yusuke Nishiyama,Songyan Bai,Susumu Kitagawa,Satoshi Horike
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (3): 1227-1234 被引量:308
标识
DOI:10.1021/jacs.8b07670
摘要

Design of molecular structures showing fast ion conductive/transport pathways in the solid state has been a significant challenge. The amorphous or glassy phase in organic polymers works well for fast ion conductivity because of their dynamic and random structure. However, the main issue with these polymers has been the difficulty in elucidating the mechanisms of ion conduction and thus low designability. Furthermore, the amorphous or glassy state of ion conductive polymers often confronts the problems of structural/mechanical stabilities. Covalent organic frameworks (COFs) are an emerging class of crystalline organic polymers with periodic structure and tunable functionality, which exhibit potential as a unique ion conductor/transporter. Here, we describe the use of a COF as a medium for all-solid-state Li+ conductivity. A bottom-up self-assembly approach was applied to covalently reticulate the flexible, bulky, and glassy poly(ethylene oxide) (PEO) moieties that can solvate Li+ for fast transport by their segmental motion in the rigid two-dimensional COF architectures. Temperature-dependent powder X-ray diffraction and thermogravimetric analysis showed that the periodic structures are intact even above 300 °C, and differential scanning calorimetry and solid-state NMR revealed that the accumulated PEO chains are highly dynamic and exhibit a glassy state. Li+ conductivity was found to depend on the dynamics and length of PEO chains in the crystalline states, and solid-state Li+ conductivity of 1.33 × 10-3 S cm-1 was achieved at 200 °C after LiTFSI doping. The high conductivity at the specified temperature remains intact for extended periods of time as a result of the structure's robustness. Furthermore, we demonstrated the first application of a COF electrolyte in an all-solid-state Li battery at 100 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独孤磕盐关注了科研通微信公众号
刚刚
落霞完成签到,获得积分10
1秒前
1秒前
YANG完成签到,获得积分10
2秒前
L112233发布了新的文献求助10
2秒前
2秒前
jiao完成签到,获得积分10
3秒前
乾明少侠完成签到 ,获得积分10
6秒前
6秒前
沙克几十块完成签到,获得积分0
6秒前
7秒前
细致的武人完成签到,获得积分10
8秒前
10秒前
ccc12306发布了新的文献求助10
11秒前
LL发布了新的文献求助10
12秒前
13秒前
lilyvan完成签到 ,获得积分10
14秒前
15秒前
一减完成签到 ,获得积分10
16秒前
打打应助wcd采纳,获得10
17秒前
17秒前
李健应助杜儒采纳,获得10
18秒前
Zyl完成签到 ,获得积分10
19秒前
doctor杨完成签到,获得积分10
19秒前
L112233完成签到,获得积分10
20秒前
小胡啊发布了新的文献求助10
21秒前
现代的南风完成签到 ,获得积分10
22秒前
aaa发布了新的文献求助10
23秒前
26秒前
莴苣完成签到,获得积分10
28秒前
29秒前
wcd完成签到,获得积分10
30秒前
30秒前
JT完成签到,获得积分10
31秒前
31秒前
zyyyyyy完成签到,获得积分10
32秒前
杜儒发布了新的文献求助10
32秒前
奔跑的青霉素完成签到 ,获得积分10
34秒前
海丽完成签到 ,获得积分10
34秒前
wcd发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4800755
求助须知:如何正确求助?哪些是违规求助? 4119286
关于积分的说明 12743574
捐赠科研通 3850916
什么是DOI,文献DOI怎么找? 2121237
邀请新用户注册赠送积分活动 1143463
关于科研通互助平台的介绍 1033256