Deep Learning Underwater Image Color Correction and Contrast Enhancement Based on Hue Preservation

水下 卷积神经网络 人工智能 计算机科学 过度拟合 灰度 计算机视觉 深度学习 图像质量 图像(数学) 颜色校正 色调 对比度(视觉) 失真(音乐) 模式识别(心理学) 人工神经网络 海洋学 带宽(计算) 放大器 地质学 计算机网络
作者
Chia‐Hung Yeh,Chih-Hsiang Huang,Chu-Han Lin
标识
DOI:10.1109/ut.2019.8734469
摘要

Underwater Image suffers from serious color distortion and low contrast problems because of complex light propagation in the ocean. In view of computing constraints of underwater vehicles, we propose a high-efficiency deep-learning based framework based on hue preservation. The framework contains three convolutional neural networks for underwater image color restoration. At first, we use the first CNN to convert the input underwater image into the grayscale image. Next, we enhanced the grayscale underwater image by the second CNN. And then, we perform the color correction to the input underwater image by the third CNN. At last, we can obtain the color-corrected image by integrating the outputs of three CNNs based on the hue preservation. In our framework, that CNNs specialize on each work can be able to simplify each architecture of CNNs at most and improve the regression quality to achieve the low computing cost and high effeciency. However, the problem of the underwater CNNs is that the underwater training data is too few and without the corresponding ground truth. Thus, we use the unsupervised learning method CycleGAN to train the underwater CNNs. We design a training method as the combination of three CycleGANs that can train the three CNNs at the same time to share the regression status. This training method may let the three CNNs of our proposed framework support each other to avoid the training overfitting and without constraint. By the proposed framework and training method, our method can process the underwater images with high quality and low computing cost. The experimental results have demonstrated the correct colors and high image quality of the proposed method's results, compared with other related approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倷倷完成签到 ,获得积分10
1秒前
YEshengnan完成签到,获得积分10
1秒前
柠檬味电子对儿完成签到,获得积分10
2秒前
李二狗完成签到,获得积分10
2秒前
wsg完成签到,获得积分10
3秒前
老王完成签到,获得积分10
3秒前
外向幻露完成签到,获得积分10
3秒前
卖萌的秋田完成签到,获得积分10
3秒前
guoxuefan完成签到,获得积分10
3秒前
梁皓然关注了科研通微信公众号
5秒前
zz完成签到 ,获得积分10
5秒前
5秒前
strive完成签到,获得积分10
6秒前
cavendipeng完成签到,获得积分10
6秒前
6秒前
方断秋完成签到,获得积分10
6秒前
强砸完成签到,获得积分10
6秒前
小狗完成签到 ,获得积分10
7秒前
小马甲应助典雅的俊驰采纳,获得10
8秒前
任性唇膏完成签到,获得积分10
8秒前
淡淡的新之完成签到,获得积分10
8秒前
diii发布了新的文献求助10
10秒前
健忘的芷荷完成签到,获得积分10
10秒前
Andy完成签到,获得积分10
11秒前
毛毛哦啊完成签到,获得积分10
11秒前
keyan完成签到,获得积分10
11秒前
少雄完成签到,获得积分10
11秒前
九日完成签到,获得积分10
11秒前
12秒前
师大刘亦菲完成签到,获得积分10
12秒前
JunhongWu完成签到,获得积分20
12秒前
Orange应助Samuel_采纳,获得10
13秒前
eterny完成签到,获得积分10
14秒前
风中思松完成签到,获得积分10
14秒前
陈谨完成签到 ,获得积分10
15秒前
念念完成签到,获得积分10
15秒前
无花果应助科研八戒采纳,获得10
15秒前
酷波er应助黄雪峰采纳,获得10
16秒前
大叉烧完成签到,获得积分10
16秒前
16秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904081
求助须知:如何正确求助?哪些是违规求助? 3449040
关于积分的说明 10855673
捐赠科研通 3174395
什么是DOI,文献DOI怎么找? 1753800
邀请新用户注册赠送积分活动 848012
科研通“疑难数据库(出版商)”最低求助积分说明 790634