亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Underwater Image Color Correction and Contrast Enhancement Based on Hue Preservation

水下 卷积神经网络 人工智能 计算机科学 过度拟合 灰度 计算机视觉 深度学习 图像质量 图像(数学) 颜色校正 色调 对比度(视觉) 失真(音乐) 模式识别(心理学) 人工神经网络 海洋学 带宽(计算) 放大器 地质学 计算机网络
作者
Chia‐Hung Yeh,Chih-Hsiang Huang,Chu-Han Lin
标识
DOI:10.1109/ut.2019.8734469
摘要

Underwater Image suffers from serious color distortion and low contrast problems because of complex light propagation in the ocean. In view of computing constraints of underwater vehicles, we propose a high-efficiency deep-learning based framework based on hue preservation. The framework contains three convolutional neural networks for underwater image color restoration. At first, we use the first CNN to convert the input underwater image into the grayscale image. Next, we enhanced the grayscale underwater image by the second CNN. And then, we perform the color correction to the input underwater image by the third CNN. At last, we can obtain the color-corrected image by integrating the outputs of three CNNs based on the hue preservation. In our framework, that CNNs specialize on each work can be able to simplify each architecture of CNNs at most and improve the regression quality to achieve the low computing cost and high effeciency. However, the problem of the underwater CNNs is that the underwater training data is too few and without the corresponding ground truth. Thus, we use the unsupervised learning method CycleGAN to train the underwater CNNs. We design a training method as the combination of three CycleGANs that can train the three CNNs at the same time to share the regression status. This training method may let the three CNNs of our proposed framework support each other to avoid the training overfitting and without constraint. By the proposed framework and training method, our method can process the underwater images with high quality and low computing cost. The experimental results have demonstrated the correct colors and high image quality of the proposed method's results, compared with other related approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的霸完成签到,获得积分10
1秒前
17秒前
暖羊羊Y完成签到 ,获得积分10
23秒前
年年有余完成签到,获得积分10
28秒前
聪明怜阳完成签到,获得积分10
57秒前
1分钟前
奋斗的萝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
olivia完成签到,获得积分10
2分钟前
从容芮应助体贴花卷采纳,获得30
2分钟前
2分钟前
anan应助Wei采纳,获得10
2分钟前
2分钟前
宝贝丫头完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
从容芮应助体贴花卷采纳,获得30
3分钟前
科研duangduang完成签到,获得积分10
3分钟前
4分钟前
zwang688完成签到,获得积分10
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
Iso发布了新的文献求助10
6分钟前
文献搬运工完成签到 ,获得积分10
6分钟前
Iso完成签到,获得积分10
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4392398
求助须知:如何正确求助?哪些是违规求助? 3882684
关于积分的说明 12090212
捐赠科研通 3526701
什么是DOI,文献DOI怎么找? 1935319
邀请新用户注册赠送积分活动 976370
科研通“疑难数据库(出版商)”最低求助积分说明 874059