定量蛋白质组学
蛋白质组
细胞培养中氨基酸的稳定同位素标记
化学
无标记量化
微粒体
计算生物学
色谱法
蛋白质组学
生物化学
酶
生物
基因
作者
Bing He,Jian Shi,Xinwen Wang,Hui Jiang,Hao Zhu
标识
DOI:10.1016/j.jprot.2019.03.005
摘要
Despite data-independent acquisition (DIA) has been increasingly used for relative protein quantification, DIA-based label-free absolute quantification method has not been fully established. Here we present a novel DIA method using the TPA algorithm (DIA-TPA) for the absolute quantification of protein expressions in human liver microsomal and S9 samples. To validate this method, both data-dependent acquisition (DDA) and DIA experiments were conducted on 36 individual human liver microsome and S9 samples. The MS2-based DIA-TPA was able to quantify approximately twice as many proteins as the MS1-based DDA-TPA method, whereas protein concentrations determined by the two approaches were comparable. To evaluate the accuracy of the DIA-TPA method, we absolutely quantified carboxylesterase 1 concentrations in human liver S9 fractions using an established SILAC internal standard-based proteomic assay; the SILAC results were consistent with those obtained from DIA-TPA analysis. Finally, we employed a unique algorithm in DIA-TPA to distribute the MS signals from shared peptides to individual proteins or isoforms and successfully applied the method to the absolute quantification of several drug-metabolizing enzymes in human liver microsomes. In sum, the DIA-TPA method not only can absolutely quantify entire proteomes and specific proteins, but also has the capability quantifying proteins with shared peptides. SIGNIFICANCE: Data independent acquisition (DIA) has emerged as a powerful approach for relative protein quantification at the whole proteome level. However, DIA-based label-free absolute protein quantification (APQ) method has not been fully established. In the present study, we present a novel DIA-based label-free APQ approach, named DIA-TPA, with the capability absolutely quantifying proteins with shared peptides. The method was validated by comparing the quantification results of DIA-TPA with that obtained from stable isotope-labeled internal standard-based proteomic assays.
科研通智能强力驱动
Strongly Powered by AbleSci AI