Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography

射线照相术 医学 接收机工作特性 鼻窦炎 人工智能 上颌窦 放射科 深度学习 算法 窦(植物学) 核医学 数学 计算机科学 牙科 外科 内科学 生物 植物
作者
Youngjune Kim,Kyong Joon Lee,Leonard Sunwoo,Dongjun Choi,Chang-Mo Nam,Jungheum Cho,Jihyun Kim,Yun Jung Bae,Roh‐Eul Yoo,Byung Se Choi,Cheolkyu Jung,Jae Hyoung Kim
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:54 (1): 7-15 被引量:98
标识
DOI:10.1097/rli.0000000000000503
摘要

Objectives The aim of this study was to compare the diagnostic performance of a deep learning algorithm with that of radiologists in diagnosing maxillary sinusitis on Waters’ view radiographs. Materials and Methods Among 80,475 Waters’ view radiographs, examined between May 2003 and February 2017, 9000 randomly selected cases were classified as normal or maxillary sinusitis based on radiographic findings and divided into training (n = 8000) and validation (n = 1000) sets to develop a deep learning algorithm. Two test sets composed of Waters’ view radiographs with concurrent paranasal sinus computed tomography were labeled based on computed tomography findings: one with temporal separation (n = 140) and the other with geographic separation (n = 200) from the training set. Area under the receiver operating characteristics curve (AUC), sensitivity, and specificity of the algorithm and 5 radiologists were assessed. Interobserver agreement between the algorithm and majority decision of the radiologists was measured. The correlation coefficient between the predicted probability of the algorithm and average confidence level of the radiologists was determined. Results The AUCs of the deep learning algorithm were 0.93 and 0.88 for the temporal and geographic external test sets, respectively. The AUCs of the radiologists were 0.83 to 0.89 for the temporal and 0.75 to 0.84 for the geographic external test sets. The deep learning algorithm showed statistically significantly higher AUC than radiologist in both test sets. In terms of sensitivity and specificity, the deep learning algorithm was comparable to the radiologists. A strong interobserver agreement was noted between the algorithm and radiologists (Cohen κ coefficient, 0.82). The correlation coefficient between the predicted probability of the algorithm and confidence level of radiologists was 0.89 and 0.84 for the 2 test sets, respectively. Conclusions The deep learning algorithm could diagnose maxillary sinusitis on Waters’ view radiograph with superior AUC and comparable sensitivity and specificity to those of radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的寒荷完成签到,获得积分20
刚刚
认真的缘郡完成签到,获得积分20
1秒前
所所应助Ysj采纳,获得10
2秒前
蜉蝣应助愉快念柏采纳,获得10
2秒前
2秒前
CipherSage应助hututu采纳,获得10
3秒前
Breeze发布了新的文献求助10
3秒前
任性的金毛完成签到,获得积分20
3秒前
4秒前
C2完成签到,获得积分10
4秒前
xiao_niu完成签到,获得积分0
4秒前
桐桐应助aktuell采纳,获得10
5秒前
L.G.Y完成签到 ,获得积分10
5秒前
6秒前
7秒前
小蘑菇应助锦鲤小然采纳,获得10
7秒前
8秒前
8秒前
含蓄心锁发布了新的文献求助10
8秒前
冥王星发布了新的文献求助20
11秒前
Betty发布了新的文献求助10
12秒前
share发布了新的文献求助10
12秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
Breeze完成签到,获得积分10
13秒前
110o发布了新的文献求助10
14秒前
15秒前
馆长应助zhao采纳,获得10
15秒前
晓磊发布了新的文献求助200
15秒前
16秒前
慕青应助苗条热狗采纳,获得10
16秒前
saikun发布了新的文献求助10
18秒前
Setix完成签到,获得积分10
18秒前
18秒前
alchol应助feedyoursoul采纳,获得60
19秒前
CR7应助大力云朵采纳,获得20
20秒前
111完成签到,获得积分20
22秒前
22秒前
健壮的绿凝完成签到,获得积分10
22秒前
上官若男应助dpp采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4509320
求助须知:如何正确求助?哪些是违规求助? 3956143
关于积分的说明 12263501
捐赠科研通 3616516
什么是DOI,文献DOI怎么找? 1989929
邀请新用户注册赠送积分活动 1026361
科研通“疑难数据库(出版商)”最低求助积分说明 917773