VOLO: Vision Outlooker for Visual Recognition

计算机科学 人工智能 计算 模式识别(心理学) 瓶颈 特征(语言学) 安全性令牌 变压器 算法 计算机安全 语言学 量子力学 物理 哲学 嵌入式系统 电压
作者
Li Yuan,Qibin Hou,Zihang Jiang,Jiashi Feng,Shuicheng Yan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-13 被引量:200
标识
DOI:10.1109/tpami.2022.3206108
摘要

Recently, Vision Transformers (ViTs) have been broadly explored in visual recognition. With low efficiency in encoding fine-level features, the performance of ViTs is still inferior to the state-of-the-art CNNs when trained from scratch on a midsize dataset like ImageNet. Through experimental analysis, we find it is because of two reasons: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines, leading to low training sample efficiency; 2) the redundant attention backbone design of ViTs leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we present a new simple and generic architecture, termed Vision Outlooker (VOLO), which implements a novel outlook attention operation that dynamically conduct the local feature aggregation mechanism in a sliding window manner across the input image. Unlike self-attention that focuses on modeling global dependencies of local features at a coarse level, our outlook attention targets at encoding finer-level features, which is critical for recognition but ignored by self-attention. Outlook attention breaks the bottleneck of self-attention whose computation cost scales quadratically with the input spatial dimension, and thus is much more memory efficient. Compared to our Tokens-To-Token Vision Transformer (T2T-ViT), VOLO can more efficiently encode fine-level features that are essential for high-performance visual recognition. Experiments show that with only 26.6 M learnable parameters, VOLO achieves 84.2% top-1 accuracy on ImageNet-1 K without using extra training data, 2.7% better than T2T-ViT with a comparable number of parameters. When the model size is scaled up to 296 M parameters, its performance can be further improved to 87.1%, setting a new record for ImageNet-1 K classification. In addition, we also take the proposed VOLO as pretrained models and report superior performance on downstream tasks, such as semantic segmentation. Code is available at https://github.com/sail-sg/volo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助有机采纳,获得10
2秒前
等下完这场雨完成签到,获得积分10
3秒前
王星星完成签到,获得积分10
4秒前
4秒前
...完成签到,获得积分10
4秒前
kk发布了新的文献求助10
5秒前
秀丽笑容完成签到 ,获得积分20
5秒前
6秒前
眼睛大又蓝完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
sue401发布了新的文献求助10
11秒前
共享精神应助谨慎的擎宇采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
温暖寻云发布了新的文献求助10
17秒前
陈醋塔塔完成签到,获得积分10
18秒前
19秒前
zgnb完成签到,获得积分10
20秒前
21秒前
友好冥王星完成签到 ,获得积分10
21秒前
21秒前
迅速的秋珊完成签到,获得积分10
22秒前
zgnb发布了新的文献求助10
24秒前
张涛完成签到,获得积分20
24秒前
贾哲宇发布了新的文献求助30
26秒前
冰的幻想完成签到,获得积分10
28秒前
风云完成签到,获得积分10
30秒前
32秒前
彭于晏应助zgnb采纳,获得10
32秒前
Hou完成签到 ,获得积分10
32秒前
成就的连虎完成签到,获得积分10
33秒前
OnMyWorldside完成签到,获得积分10
38秒前
科研通AI5应助sherry采纳,获得10
39秒前
39秒前
40秒前
科研通AI5应助轶Y采纳,获得30
40秒前
王大炮完成签到 ,获得积分10
41秒前
Hello应助冰的幻想采纳,获得10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757