亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a machine‐learning model to identify the impacts of pesticides characteristics on soil microbial communities from high‐throughput sequencing data

杀虫剂 生物 生物群 生态学 生化工程 生物技术 环境化学 化学 工程类
作者
Mingjing Ke,Nuohan Xu,Zhenyan Zhang,Danyan Qiu,Jian Kang,Tao Lu,Tingzhang Wang,Willie J.G.M. Peijnenburg,Liwei Sun,Baolan Hu,Haifeng Qian
出处
期刊:Environmental Microbiology [Wiley]
卷期号:24 (11): 5561-5573 被引量:14
标识
DOI:10.1111/1462-2920.16175
摘要

High-throughput sequencing (HTS) of soil environmental DNA provides an advanced insight into the effects of pesticides on soil microbial systems. However, the association between the properties of the pesticide and its ecological impact remains methodically challenging. Risks associated with pesticide use can be minimized if pesticides with optimal structural traits were applied. For this purpose, we merged the 20 independent HTS studies, to reveal that pesticides significantly reduced beneficial bacteria associated with soil and plant immunity, enhanced the human pathogen and weaken the soil's ecological stability. Through the machine-learning approach, correlating these impacts with the physicochemical properties of the pesticides yielded a random forest model with good predictive capabilities. The models revealed that physical pesticide properties such as the dissociation constant (pKa), the molecular weight and water solubility, determined the ecological impact of pesticides to a large extent. Moreover, this study identified that eco-friendly pesticides should possess a value of pKa > 5 and a molecular weight in the range of 200-300 g/mol, which were found to be conducive to bacteria related to plant immunity promotion and exerted the lowest fluctuation of human opportunistic pathogen and keystone species. This guides the design of pesticides for which the impacts on soil biota are minimized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
JACK发布了新的文献求助10
14秒前
小鸟芋圆露露完成签到 ,获得积分10
20秒前
Lucas应助机灵白桃采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
36秒前
nenoaowu应助科研通管家采纳,获得10
36秒前
38秒前
樊樊发布了新的文献求助10
43秒前
LY_Qin完成签到,获得积分10
1分钟前
CC1219应助pipi采纳,获得10
1分钟前
1分钟前
机灵白桃发布了新的文献求助10
1分钟前
健康的大船完成签到 ,获得积分10
1分钟前
1分钟前
Saven发布了新的文献求助10
1分钟前
Saven完成签到,获得积分10
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
日出完成签到 ,获得积分10
1分钟前
樊樊完成签到 ,获得积分20
1分钟前
pipi完成签到 ,获得积分20
2分钟前
2分钟前
JavedAli完成签到,获得积分10
2分钟前
2分钟前
大模型应助启震采纳,获得10
2分钟前
qq发布了新的文献求助10
2分钟前
2分钟前
启震发布了新的文献求助10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
启震完成签到,获得积分10
2分钟前
qq完成签到,获得积分20
2分钟前
4分钟前
4分钟前
小蘑菇应助Xuxiaojun采纳,获得10
4分钟前
4分钟前
4分钟前
Xuxiaojun发布了新的文献求助10
4分钟前
Xuxiaojun完成签到,获得积分20
4分钟前
朱朱子完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244117
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483