Multi-objective particle swarm optimization algorithm using Cauchy mutation and improved crowding distance

多群优化 粒子群优化 数学优化 柯西分布 元启发式 元优化 萤火虫算法 无导数优化 帝国主义竞争算法 多目标优化 计算机科学 突变 最优化问题 水准点(测量) 局部最优 趋同(经济学) 算法 群体行为 适应性突变 数学 遗传算法 经济 统计 化学 基因 生物化学 地理 经济增长 大地测量学
作者
Qing Li,Xiaohua Zeng,Wenhong Wei
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:16 (2): 250-276 被引量:5
标识
DOI:10.1108/ijicc-04-2022-0118
摘要

Purpose Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance. Design/methodology/approach In this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently. Findings In order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms. Originality/value In order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
没头脑和不高兴完成签到,获得积分10
1秒前
1秒前
烟花应助暮光的加纳采纳,获得10
2秒前
Inspiring发布了新的文献求助10
2秒前
2秒前
一缕阳光完成签到,获得积分10
3秒前
3秒前
共享精神应助Fnoopy采纳,获得10
3秒前
归尘发布了新的文献求助30
4秒前
bonita完成签到 ,获得积分10
4秒前
Steven发布了新的文献求助10
4秒前
bkagyin应助读书的时候采纳,获得10
4秒前
5秒前
5秒前
老农民完成签到,获得积分10
5秒前
Lin2019发布了新的文献求助10
6秒前
玉米豆发布了新的文献求助10
6秒前
xxx发布了新的文献求助10
7秒前
舒适数据线应助suian采纳,获得10
7秒前
Steven完成签到,获得积分10
7秒前
xian丶chan发布了新的文献求助10
8秒前
9秒前
vivi完成签到,获得积分10
10秒前
11秒前
yuzhou完成签到 ,获得积分10
11秒前
12秒前
汉堡包应助沉静亿先采纳,获得10
12秒前
ww发布了新的文献求助10
12秒前
传奇3应助tzh采纳,获得10
13秒前
14秒前
14秒前
左左发布了新的文献求助30
14秒前
顾矜应助rainy77采纳,获得30
15秒前
17秒前
冯硕发布了新的文献求助10
17秒前
linxi完成签到,获得积分10
17秒前
KingWong发布了新的文献求助20
18秒前
神说要有光完成签到,获得积分10
18秒前
wisdom应助小猴儿采纳,获得10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094476
求助须知:如何正确求助?哪些是违规求助? 3632804
关于积分的说明 11514849
捐赠科研通 3343479
什么是DOI,文献DOI怎么找? 1837620
邀请新用户注册赠送积分活动 905271
科研通“疑难数据库(出版商)”最低求助积分说明 823053