亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLO-EP: A detection algorithm to detect eggs of Pomacea canaliculata in rice fields

福寿螺 水田 人工智能 生物 模式识别(心理学) 计算机科学 生态学 蜗牛
作者
Yao Huang,Jing He,Gang Liu,Dian Li,Ruining Hu,Xiaoxi Hu,Dingding Bian
出处
期刊:Ecological Informatics [Elsevier]
卷期号:77: 102211-102211 被引量:23
标识
DOI:10.1016/j.ecoinf.2023.102211
摘要

The widespread of Pomacea canaliculata, a new “killer” in rice fields, may threaten the productivity and quality of rice. Therefore, keeping an eye on it is crucial for food security. However, direct monitoring is challenging because adult Pomacea canaliculata often reside underwater. The eggs can be observed since they are frequently attached to dry things. Additionally, because the eggs lack the capacity to move, monitoring the eggs is helpful for the early implementation of control measures. As a result, we suggest a method for monitoring the eggs. We used unmanned aerial vehicles (UAVs) to take close-up pictures of rice fields to capture images of the eggs, and then we applied deep learning algorithms to recognize and identify them. This method takes advantage of the convenience and capacity of UAVs to gather images over a broad region. It is difficult for conventional approaches to provide better results because the eggs of Pomacea canaliculata are tiny targets and only occupy a few pixels in UAV photos. To detect eggs of Pomacea canaliculata in rice fields using UAV images, we propose the YOLO-EP (YOLOv5s for eggs of Pomacea canaliculata) algorithm, which is primarily based on YOLOv5s and is improved for egg targets. To decrease the feature map detail loss, the algorithm uses transposed convolution instead of nearest interpolation upsampling and combines swin transformer and ECA attention algorithms to improve feature extraction. We add a modest target detection layer for eggs and utilize NWD as the model's bounding box loss function. According to the experimental findings, the YOLO-EP algorithm is better than other detection techniques in accuracy and performance, with [email protected] of 88.6%, precision of 85.1%, and recall of 82.6%. The improvements were 5.1%, 2.7%, and 3.8% above the base model. Overall, using UAV data and deep learning techniques to detect and identify eggs of Pomacea canaliculata opens up new possibilities for agricultural pest and disease surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC应助科研通管家采纳,获得30
刚刚
VDC应助科研通管家采纳,获得30
刚刚
10秒前
安青兰完成签到 ,获得积分10
21秒前
53秒前
1分钟前
1分钟前
1分钟前
1分钟前
安年完成签到 ,获得积分10
1分钟前
2分钟前
汉堡包应助王王碎冰冰采纳,获得10
2分钟前
2分钟前
555557发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
555557完成签到,获得积分10
3分钟前
3分钟前
3分钟前
王王碎冰冰关注了科研通微信公众号
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
天天快乐应助111采纳,获得20
4分钟前
FJXTY发布了新的文献求助10
4分钟前
4分钟前
4分钟前
111发布了新的文献求助20
4分钟前
bkagyin应助FJXTY采纳,获得10
4分钟前
牛黄完成签到 ,获得积分10
5分钟前
彭于晏应助迅速的岩采纳,获得10
5分钟前
5分钟前
5分钟前
赵赵发布了新的文献求助10
5分钟前
5分钟前
迅速的岩发布了新的文献求助10
5分钟前
赵赵完成签到,获得积分20
5分钟前
Willow完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553