Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM

均方误差 计算机科学 地表径流 调度(生产过程) 公制(单位) 数据挖掘 统计 数学优化 数学 生态学 运营管理 经济 生物
作者
Jun Guo,Yi Liu,Qiang Zou,Lei Ye,Shuang Zhu,Hairong Zhang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:624: 129969-129969 被引量:120
标识
DOI:10.1016/j.jhydrol.2023.129969
摘要

Accurate prediction of runoff is an important foundation for optimizing water resource allocation and reservoir scheduling operations. However, due to its complex characteristics such as time-varying and non-stationary, accurate prediction of the runoff process is very difficult. This paper proposes a novel approach for runoff forecasting by combining the physical mechanism models with the Long Short-Term Memory network (LSTM) method. Utilizing the simulation and description capabilities of physically based models, as well as the powerful nonlinear analysis provided by big data methods, a type of model selection and combination strategy is proposed incorporating 16 different physically based models with LSTM technology. Additionally, to accommodate the comprehensive analysis and evaluation of multi-model forecasting performance, this paper also proposed a comprehensive evaluation metric for runoff forecasting considering the characteristics of group models. The results of the case study demonstrate that this strategy can obtain model combinations suitable for different watershed characteristics and effectively improve the forecast accuracy of multiple models. Model combinations sorted by validation period RMSE and R2 should be a superior choice. When evaluating the runoff forecasting accuracy of obtained optimal model combination during the calibration period, the average reduction of Root Mean Square Error (RMSE) is 39.62%, and the average increase of Nash-Sutcliffe coefficient R2 is 7.49%. During the validation period, the average reduction of RMSE is 62.68% and the average increase of R2 is 24.24%. When the model combinations sorted by validation period F score, the obtained model combination increased RMSE by 22.7% and decreased R2 by 7.3% comparing to the model combination selected by RMSE and R2. It is indicated that the F score may not be suitable for evaluating model selection. The method proposed in this article can effectively improve the overall forecasting performance of a single forecasting model and has good practical value for promotion and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点金石发布了新的文献求助10
1秒前
芜湖完成签到,获得积分10
1秒前
斯文黎云发布了新的文献求助20
2秒前
yls发布了新的文献求助10
2秒前
852应助DONG采纳,获得30
3秒前
zyy发布了新的文献求助10
4秒前
PAIDAXXXX完成签到,获得积分10
4秒前
深情安青应助chengzi采纳,获得10
5秒前
ahhhhkkkha发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
Dc完成签到,获得积分10
9秒前
11秒前
NexusExplorer应助yls采纳,获得10
11秒前
Agrale完成签到 ,获得积分10
13秒前
哟嚛发布了新的文献求助10
14秒前
kiuikiu发布了新的文献求助10
15秒前
JKIKU完成签到 ,获得积分10
17秒前
大腚疯猪应助橘子采纳,获得20
20秒前
诸葛御风应助yy采纳,获得10
21秒前
迷路的书南应助嘉嘉采纳,获得10
22秒前
小二郎应助小羊佳佳采纳,获得10
24秒前
25秒前
不穷知识发布了新的文献求助10
25秒前
chayue完成签到,获得积分10
25秒前
少7一点8完成签到,获得积分10
27秒前
28秒前
SciGPT应助子车万仇采纳,获得10
28秒前
29秒前
搜集达人应助Hyh_orz采纳,获得10
31秒前
liyu完成签到,获得积分10
31秒前
dddd完成签到 ,获得积分10
32秒前
33秒前
dddd完成签到,获得积分10
33秒前
liyu发布了新的文献求助10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
彭于晏应助科研通管家采纳,获得10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841