Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation

山崩 物理 计算机科学 地质学 岩土工程
作者
Songlin Liu,Luqi Wang,Wengang Zhang,Weixin Sun,Yunhao Wang,Jianping Liu
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:16 (8): 3192-3205 被引量:29
标识
DOI:10.1016/j.jrmge.2023.11.039
摘要

Landslide susceptibility mapping is an integral part of geological hazard analysis. Recently, the emphasis of many studies has been on data-driven models, notably those derived from machine learning, owing to their aptitude for tackling complex non-linear problems. However, the prevailing models often disregard qualitative research, leading to limited interpretability and mistakes in extracting negative samples, i.e. inaccurate non-landslide samples. In this study, Scoops 3D (a three-dimensional slope stability analysis tool) was utilized to conduct a qualitative assessment of slope stability in the Yunyang section of the Three Gorges Reservoir area. The depth of the bedrock was predicted utilizing a Convolutional Neural Network (CNN), incorporating local boreholes and building on the insights from prior research. The Random Forest (RF) algorithm was subsequently used to execute a data-driven landslide susceptibility analysis. The proposed methodology demonstrated a notable increase of 29.25% in the evaluation metric, the area under the receiver operating characteristic curve (ROC-AUC), outperforming the prevailing benchmark model. Furthermore, the landslide susceptibility map generated by the proposed model demonstrated superior interpretability. This result not only validates the effectiveness of amalgamating mathematical and mechanistic insights for such analyses, but it also carries substantial academic and practical implications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1123完成签到,获得积分10
刚刚
一天不学浑身难受完成签到 ,获得积分10
刚刚
路人完成签到,获得积分0
刚刚
在水一方应助无心的浩轩采纳,获得10
刚刚
艾瑞克完成签到,获得积分10
2秒前
2秒前
浪里白条发布了新的文献求助10
2秒前
彭于晏应助chenchen采纳,获得10
2秒前
请输入昵称完成签到 ,获得积分10
3秒前
3秒前
饱满的慕凝完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
小蘑菇应助吕佩采纳,获得10
4秒前
一帆风顺发布了新的文献求助10
5秒前
5秒前
6秒前
jinbiaofan发布了新的文献求助10
6秒前
英俊的铭应助海绵宝宝采纳,获得10
7秒前
8秒前
顺利毕业发布了新的文献求助10
9秒前
Owen应助明亮的妙芙采纳,获得10
9秒前
小二郎应助结实的帆布鞋采纳,获得10
10秒前
doni发布了新的文献求助30
10秒前
10秒前
11秒前
12秒前
许甜甜鸭应助科研通管家采纳,获得20
12秒前
江峰应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
个性归尘应助科研通管家采纳,获得30
13秒前
英姑应助科研通管家采纳,获得10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274