Identifying the geospatial relationship of surface ozone pollution in China: Implications for key pollution control regions

地理空间分析 污染 环境科学 空气污染 三角洲 自然地理学 地理 地图学 生态学 生物 航空航天工程 工程类
作者
Yong Cheng,Peng Yan,Li‐Ming Cao,Xiaofeng Huang,Lingyan He
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:930: 172763-172763 被引量:6
标识
DOI:10.1016/j.scitotenv.2024.172763
摘要

Surface ozone pollution, as a pressing environmental concern, has garnered widespread attention across China. Due to air mass transport, effective control of ozone pollution is highly dependent on collaborative efforts across neighboring regions. However, specific regions with strong internal interactions of ozone pollution are not yet well identified. Here, we introduced the Geospatial SHapley Additive exPlanation (GeoSHAP) approach, which primarily involves machine learning and geostatistical algorithms. Based on extensive atmospheric environmental monitoring data from 2017 to 2021, machine learning models were employed to train and predict ozone concentrations at the target location. The R2 values on the test sets of different scale regions all reached 0.98 in the overall condition, indicating that the core model has good accuracy and generalization ability. The results highlight key regions with high ozone geospatial relationship (OGR) index, predominantly located in the Northern District (ND), spanning the Fen-Wei Plain, the Loess Plateau, and the North China Plain, as well as within portions of the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). Further investigation indicated that high geospatial relationships stem from a synergy between anthropogenic and natural factors, with anthropogenic factors serving as a pivotal element. This study revealed key regions with the most urgent need for joint control of anthropogenic sources to mitigate ozone pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想吃糖葫芦完成签到 ,获得积分10
刚刚
英俊的铭应助等待以南采纳,获得10
1秒前
liang完成签到 ,获得积分10
1秒前
无花果应助是真的不吃鱼采纳,获得10
2秒前
善良老头完成签到,获得积分10
2秒前
光亮语梦完成签到 ,获得积分10
3秒前
科研狂人发布了新的文献求助10
4秒前
4秒前
ty发布了新的文献求助20
6秒前
6秒前
平常的毛豆应助KeYang采纳,获得10
6秒前
7秒前
8秒前
8秒前
Aterna春完成签到,获得积分10
10秒前
金桔完成签到,获得积分10
11秒前
hongyintao发布了新的文献求助10
11秒前
墨丿筠发布了新的文献求助10
11秒前
11秒前
善学以致用应助Tokgo采纳,获得10
12秒前
12秒前
酷酷问梅发布了新的文献求助10
13秒前
Ping发布了新的文献求助30
13秒前
小丁同学应助自觉南风采纳,获得10
14秒前
追寻的如彤完成签到,获得积分10
14秒前
15秒前
16秒前
墨丿筠完成签到,获得积分10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870874
求助须知:如何正确求助?哪些是违规求助? 3412925
关于积分的说明 10682149
捐赠科研通 3137423
什么是DOI,文献DOI怎么找? 1730915
邀请新用户注册赠送积分活动 834476
科研通“疑难数据库(出版商)”最低求助积分说明 781172