Reconstructing global daily XCO2 at 1° × 1° spatial resolution from 2016 to 2019 with multisource satellite observation data

遥感 图像分辨率 卫星 计算机科学 环境科学 地质学 人工智能 物理 天文
作者
Yao Huang,Rui Wang,Ming‐Shaung Ju,Xianxun Zhu,Yanan Xie
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (02)
标识
DOI:10.1117/1.jrs.18.028502
摘要

The multisource satellite observation data have been widely used in carbon cycle research owing to their long-term and large-scale characteristics. However, the sparse sampling density of satellite observation data often results in incomplete spatiotemporal coverage at certain time intervals, which hinders the accurate representation of global carbon dioxide (CO2) concentration variations and is inadequate for supporting research applications with different precision requirements. To address this issue, a new multiscale fixed rank kriging is proposed to generate long-term daily scale column-averaged dry-air mole fraction of CO2 (XCO2) products from 2016 to 2019 over the globe on grids of 1°, for which the XCO2 data from Orbiting Carbon Observatory-2, Orbiting Carbon Observatory-3, and Greenhouse gases Observing SATellite are applied. Experimental results show that the dataset has a high spatiotemporal resolution and coverage validated by the Total Carbon Column Observing Network data to effectively fill gaps in satellite observation data, with cross-validation of R2=0.93 and root mean square error = 1.06 ppm. Moreover, we analyze the spatial distribution and seasonal variation characteristics of global and Chinese XCO2 from 2016 to 2019, with XCO2 presenting an obvious latitudinal gradient and seasonal periodicity in space. The proposed method establishes a foundational research dataset for the analysis of spatiotemporal variation characteristics of CO2 concentration at global and regional scales, as well as investigations on carbon sources and sink.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
2秒前
小猛发布了新的文献求助10
3秒前
HUO完成签到,获得积分20
5秒前
聪明白羊完成签到,获得积分10
5秒前
三叶草完成签到,获得积分20
6秒前
呼呼呼完成签到 ,获得积分10
6秒前
8秒前
2568269431完成签到 ,获得积分10
8秒前
9秒前
9秒前
壮观飞鸟完成签到,获得积分10
10秒前
在水一方应助喜悦采纳,获得10
11秒前
123完成签到,获得积分10
12秒前
12秒前
13秒前
Stamina678发布了新的文献求助30
14秒前
彭于晏应助冷静乌采纳,获得10
15秒前
15秒前
18秒前
oneeight完成签到,获得积分10
20秒前
20秒前
起風了完成签到,获得积分10
20秒前
枼leon应助眼睛大不斜采纳,获得30
20秒前
123完成签到,获得积分10
21秒前
大脚仙完成签到,获得积分10
21秒前
Ning发布了新的文献求助30
22秒前
22秒前
23秒前
ken完成签到,获得积分10
24秒前
27秒前
冷静乌发布了新的文献求助10
27秒前
喜悦完成签到,获得积分10
30秒前
情怀应助yrh采纳,获得10
33秒前
xxiao完成签到 ,获得积分10
34秒前
隋成博完成签到,获得积分10
34秒前
sw完成签到,获得积分10
34秒前
冷静乌完成签到,获得积分10
35秒前
俭朴新之完成签到 ,获得积分10
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319