MFHOD: Multi-modal image fusion method based on the higher-order degradation model

计算机科学 情态动词 图像(数学) 图像融合 计算机视觉 融合 人工智能 订单(交换) 语言学 化学 哲学 财务 高分子化学 经济
作者
Jinxin Guo,Weida Zhan,Yichun Jiang,Ge Wei,Yu Chen,Xiaoyu Xu,Jin Li,Yanyan Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123731-123731 被引量:8
标识
DOI:10.1016/j.eswa.2024.123731
摘要

The task of multimodal image fusion aims to preserve the respective advantages of each modality, such as the detailed texture information from visible light images and the salient target information from infrared images. However, images in real environments are often not perfect high-quality images but are affected by various degradation factors such as noise, blur, and glare. Existing unsupervised multimodal image fusion algorithms use undegraded source images as input to fusion networks and generate high-quality fusion images through complex fusion strategies. This single linear learning approach from high-quality to high-quality cannot be applied to the fusion task of degraded multimodal images in real environments. To address this issue, this paper proposes an end-to-end multimodal image fusion network based on a high-order local degradation model (MFHOD). Firstly, inspired by the idea of probabilistic degradation, we propose a high-order local random degradation model (HODM), which inputs the source multimodal images into the degradation model to obtain degraded images before feeding them into the network. Secondly, we design a simple and efficient dual-branch feature extraction encoder to extract deep features from images. Then, from the perspectives of image pixels, brightness, and gradients, we propose an improved composite loss composed of multiple loss functions to constrain network training. Finally, we propose a L2-norm fusion strategy for preserving brightness information in low-light nighttime images. Our MFHOD demonstrates good performance on infrared and visible light image datasets as well as medical image datasets. Experimental results show that MFHOD can effectively suppress the effects of glare, noise, and smoke in adverse environments, and also improve the quality of fusion images in low-light and nighttime environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无为完成签到 ,获得积分10
1秒前
共享精神应助化工葫芦娃采纳,获得10
1秒前
虚拟的蘑菇完成签到,获得积分10
2秒前
科研通AI2S应助草木采纳,获得10
2秒前
天天快乐应助Hermon采纳,获得10
5秒前
平淡茈完成签到,获得积分10
6秒前
6秒前
pangzh完成签到,获得积分10
6秒前
爬不起来发布了新的文献求助20
6秒前
zzff完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
DrY发布了新的文献求助30
12秒前
情怀应助Elec采纳,获得10
13秒前
13秒前
13秒前
轻轻发布了新的文献求助80
16秒前
CRANE完成签到 ,获得积分10
17秒前
17秒前
汉堡包应助paixingxing采纳,获得10
18秒前
猫咪老师应助宸一采纳,获得30
18秒前
Hermon发布了新的文献求助10
18秒前
x5kyi发布了新的文献求助10
18秒前
杨杨发布了新的文献求助10
18秒前
20秒前
21秒前
22秒前
能干的小海豚完成签到,获得积分10
23秒前
橙子发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
26秒前
26秒前
tutu完成签到,获得积分10
26秒前
mao应助茉莉青提采纳,获得10
26秒前
从容的盼晴完成签到,获得积分10
27秒前
27秒前
积极一德完成签到 ,获得积分10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268