杰纳斯
激子
单层
异质结
光致发光
材料科学
硫族元素
带隙
凝聚态物理
偶极子
电荷(物理)
光电子学
纳米技术
化学
结晶学
物理
量子力学
有机化学
作者
Matthew S. G. Feuer,Alejandro R.‐P. Montblanch,Mohammed Sayyad,Carola M. Purser,Ying Qin,Evgeny M. Alexeev,Alisson R. Cadore,Bárbara L. T. Rosa,James Kerfoot,Elaheh Mostaani,Radosław Kalęba,Pranvera Kolari,Jan Kopaczek,Kenji Watanabe,Takashi Taniguchi,Andrea C. Ferrari,Dhiren M. Kara,Sefaattin Tongay,Mete Atatüre
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-04-14
卷期号:17 (8): 7326-7334
被引量:17
标识
DOI:10.1021/acsnano.2c10697
摘要
Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential landscape. Previous Janus studies had broad photoluminescence (>18 meV) spectra obfuscating their specific excitonic origin. Here, we identify the neutral and the negatively charged inter- and intravalley exciton transitions in Janus WSeS monolayers with ∼6 meV optical line widths. We integrate Janus monolayers into vertical heterostructures, allowing doping control. Magneto-optic measurements indicate that monolayer WSeS has a direct bandgap at the K points. Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical heterostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI