已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Surprisingly Popular-Based Adaptive Memetic Algorithm for Energy-Efficient Distributed Flexible Job Shop Scheduling

数学优化 计算机科学 作业车间调度 模因算法 迭代局部搜索 调度(生产过程) 人口 操作员(生物学) 局部搜索(优化) 分布式计算 算法 地铁列车时刻表 数学 转录因子 基因 操作系统 生物化学 社会学 人口学 抑制因子 化学
作者
Rui Li,Wenyin Gong,Ling Wang,Chao Lu,Xinying Zhuang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 8013-8023 被引量:69
标识
DOI:10.1109/tcyb.2023.3280175
摘要

With the development of the economy, distributed manufacturing has gradually become the mainstream production mode. This work aims to solve the energy-efficient distributed flexible job shop scheduling problem (EDFJSP) while simultaneously minimizing makespan and energy consumption. Some gaps are stated following: 1) the previous works usually adopt the memetic algorithm (MA) with variable neighborhood search. However, the local search (LS) operators are inefficient due to strong randomness; 2) the confidence-based adaptive operator selection model follows the experiences of the major crowds, which ignores the efficient operators with low weight, so it can not select the really efficient operator; 3) the previous works lack of efficient strategy to save energy; and 4) the mainstream memetic framework adopts LS to all solutions, which causes the population to converge too quickly and the diversity is extremely reduced. Thus, we propose a surprisingly popular-based adaptive MA (SPAMA) to overcome the above deficiencies. The contributions are as follows: 1) four problem-based LS operators are employed to improve the convergence; 2) a surprisingly popular degree (SPD) feedback-based self-modifying operators selection model is proposed to find the efficient operators with low weight and correct crowd decision making; 3) the full active scheduling decoding is presented to reduce the energy consumption; and 4) an elite strategy is designed to balance the resources between global and LS. In order to evaluate the effectiveness of SPAMA, it is compared with state-of-the-art algorithms on Mk and DP benchmarks. The results demonstrate the superiority of SPAMA to the state-of-art algorithms for solving EDFJSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老豆发布了新的文献求助10
1秒前
鸡蛋蘑菇酱完成签到,获得积分10
2秒前
2秒前
Joe发布了新的文献求助10
3秒前
6秒前
7秒前
8秒前
TaoJ发布了新的文献求助10
9秒前
一只西瓜茶完成签到,获得积分10
11秒前
13秒前
14秒前
Hinsen发布了新的文献求助10
14秒前
zzzy完成签到 ,获得积分10
15秒前
曾经的语芙完成签到,获得积分10
15秒前
16秒前
16秒前
儒雅的夏山完成签到 ,获得积分10
17秒前
青羽发布了新的文献求助10
20秒前
隐形曼青应助TaoJ采纳,获得10
21秒前
Abracadabra发布了新的文献求助10
21秒前
明理的雁发布了新的文献求助10
21秒前
22秒前
23秒前
24秒前
Hinsen完成签到,获得积分10
24秒前
25秒前
zhuming发布了新的文献求助10
26秒前
高赛文发布了新的文献求助10
26秒前
Zdh同学完成签到,获得积分10
27秒前
Hello应助322628采纳,获得10
27秒前
冷静冷风发布了新的文献求助10
29秒前
舒适新梅发布了新的文献求助10
29秒前
30秒前
科研通AI6.1应助xiaoxinbaba采纳,获得10
30秒前
31秒前
善学以致用应助zhuming采纳,获得10
31秒前
东方三问完成签到,获得积分10
31秒前
爆米花应助TTTT采纳,获得10
33秒前
时尚的爆米花完成签到 ,获得积分10
33秒前
上官若男应助林好人采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779215
求助须知:如何正确求助?哪些是违规求助? 5646297
关于积分的说明 15451448
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642783
邀请新用户注册赠送积分活动 1590462
关于科研通互助平台的介绍 1544831