A review on electrode and electrolyte for lithium ion batteries under low temperature

电解质 材料科学 电极 电化学 锂(药物) 化学工程 纳米技术 化学 医学 工程类 内分泌学 物理化学
作者
Y. Li,Guoxu Zheng,Guanzuo Liu,Zhuo Yuan,Xinzhe Huang,Yinan Li
出处
期刊:Electroanalysis [Wiley]
卷期号:35 (9) 被引量:6
标识
DOI:10.1002/elan.202300042
摘要

Abstract Under low temperature (LT) conditions (−80 °C∼0 °C), lithium‐ion batteries (LIBs) may experience the formation of an extensive solid electrolyte interface (SEI), which can cause a series of detrimental effects such as Li + deposition and irregular dendritic filament growth on the electrolyte surface. These issues ultimately lead to the degradation of the LT performance of LIBs. As a result, new electrode/electrolyte materials are necessary to address these challenges and enable the proper functioning of LIBs at LT. Given that most electrochemical reactions in lithium‐ion batteries occur at the electrode/electrolyte interface, finding solutions to mitigate the negative impact caused by SEI is crucial to improve the LT performance of LIBs. In this article, we analyze and summarize the recent studies on electrode and electrolyte materials for low temperature lithium‐ion batteries (LIBs). These materials include both metallic materials like tin, manganese, and cobalt, as well as non‐metallic materials such as graphite and graphene. Modified materials, such as those with nano or alloying characteristics, generally exhibit better properties than raw materials. For instance, Sn nanowire‐Si nanoparticles (SiNPs−In‐SnNWs) and tin dioxide carbon nanotubes (SnO 2 @CNT) have faster Li + transport rates and higher reversible capacity at LT. However, it′s important to note that when operating under LT, the electrolyte may solidify, leading to difficulty in Li + transmission. The compatibility between the electrolyte and electrode can affect the formation of the solid electrolyte interphase (SEI) and the stability of the electrode/electrolyte system. Therefore, a good electrode/electrolyte system is crucial for successful operation of LIBs at LT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
单薄惜文完成签到,获得积分10
2秒前
YUMI发布了新的文献求助10
2秒前
36456657完成签到,获得积分0
2秒前
2秒前
萤火虫完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
光亮聪健应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
谈笑间应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
小罗shining完成签到,获得积分10
4秒前
啦啦啦完成签到,获得积分20
4秒前
满意静丹完成签到,获得积分10
4秒前
csl发布了新的文献求助30
4秒前
华仔应助sht采纳,获得10
4秒前
小马甲应助小猫钓鱼采纳,获得10
5秒前
luogrou发布了新的文献求助10
5秒前
orixero应助长生采纳,获得10
5秒前
华仔应助si采纳,获得10
6秒前
小詹发布了新的文献求助10
6秒前
Aventen应助学习猴采纳,获得10
7秒前
科研通AI5应助小米采纳,获得10
8秒前
彭于晏应助monkey采纳,获得10
8秒前
8秒前
CodeCraft应助路人甲耶耶采纳,获得10
8秒前
斯文败类应助打酱油的趴采纳,获得10
9秒前
Owen应助汤米bb采纳,获得10
9秒前
科研通AI5应助月月采纳,获得10
10秒前
10秒前
勇敢虫子不怕困难完成签到,获得积分10
10秒前
pampant完成签到,获得积分20
11秒前
DaiHuichao完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432