Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models

状态空间 马尔科夫蒙特卡洛 算法 贝叶斯推理 高斯分布 计算机科学 马尔可夫链 状态空间表示 推论 隐马尔可夫模型 可逆跳跃马尔可夫链蒙特卡罗 后验概率 线性模型 数学 贝叶斯概率 人工智能 机器学习 统计 物理 量子力学
作者
Benjamin Cox,Vı́ctor Elvira
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 1922-1937 被引量:8
标识
DOI:10.1109/tsp.2023.3278867
摘要

State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to be particularly hard to estimate, since it encodes the between-step relationships of the state elements, which are never observed. In many real-world applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most contemporary parameter estimation methods do not exploit this feature. In this work, we take a fully probabilistic approach and propose SpaRJ, a novel simulation method that obtains sparse samples from the posterior distribution of the transition matrix of a linear-Gaussian state-space model. We exploit the sparsity of the latent space by uncovering its underlying structure. Our proposed method is the first algorithm to provide a fully Bayesian quantification of the sparsity in the model. SpaRJ belongs to the family of reversible jump Markov chain Monte Carlo methods. Our method obtains sparsity via exploring a set of models that exhibit differing sparsity patterns in the transition matrix. The algorithm implements a new set of transition kernels that are specifically tailored to efficiently explore the space of sparse matrices. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees and efficiently explores sparse subspaces, which unveils the latent structure of the data generating process, thereby enhancing interpretability. The excellent performance of SpaRJ is showcased in a synthetic example with dimension 144 in the parameter space, and in a numerical example with real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助嗯呐采纳,获得10
1秒前
1秒前
3秒前
3秒前
3秒前
在水一方应助蓝精灵采纳,获得10
4秒前
微信研友完成签到 ,获得积分10
4秒前
5秒前
Owen应助杜杜采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
pingze111完成签到,获得积分10
7秒前
hyccc发布了新的文献求助10
8秒前
khfdkfiashd发布了新的文献求助10
9秒前
LM完成签到,获得积分10
9秒前
9秒前
木木198022完成签到,获得积分10
10秒前
科研小王完成签到,获得积分10
10秒前
11秒前
粗心的绾绾应助小太阳采纳,获得10
11秒前
馒头酶发布了新的文献求助10
13秒前
三与三十万完成签到,获得积分20
13秒前
13秒前
领导范儿应助lin采纳,获得10
14秒前
嗯呐发布了新的文献求助10
14秒前
徐梦曦发布了新的文献求助10
16秒前
16秒前
CipherSage应助jinjun采纳,获得10
18秒前
Gaopkid完成签到,获得积分20
19秒前
20秒前
EShan发布了新的文献求助10
20秒前
科研通AI5应助甘乐采纳,获得10
21秒前
科目三应助khfdkfiashd采纳,获得10
22秒前
未夕晴完成签到,获得积分10
23秒前
阿网发布了新的文献求助10
23秒前
25秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819299
求助须知:如何正确求助?哪些是违规求助? 3362381
关于积分的说明 10416801
捐赠科研通 3080563
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403