Predicting Model of Dual-Mode Shield Tunneling Parameters in Complex Ground Using Recurrent Neural Networks and Multiple Optimization Algorithms

算法 粒子群优化 量子隧道 计算机科学 人工神经网络 离群值 人工智能 物理 光电子学
作者
Tiantian Yang,Tian Wen,Xing Huang,Bin Liu,Hongbing Shi,Shaoran Liu,Xiaoxiang Peng,Sheng Gao
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (2): 581-581
标识
DOI:10.3390/app14020581
摘要

Based on the left tunnel of the Liuxiandong Station to Baimang Station section of Shenzhen Metro Line 13 (China), a prediction model for the advanced rate of dual-mode shield tunneling in complex strata was established to explore intelligent tunneling technology in complex ground. Firstly, geological parameters of the complex strata and on-site monitoring parameters of EPB/TBM dual-mode shield tunneling were collected, with tunneling parameters, shield tunneling mode, and strata parameters selected as input features. Subsequently, the Isolation Forest algorithm was employed to remove outliers from the original advance parameters, and an improved mean filtering algorithm was applied to eliminate data noise, resulting in the steady-state phase parameters of the shield tunneling process. The base model was chosen as the Long-Short Term Memory (LSTM) recurrent neural network. During the model training process, particle swarm optimization (PSO), genetic algorithm (GA), differential evolution (DE), and Bayesian optimization (BO) algorithms were, respectively, combined to optimize the model’s hyperparameters. Via rank analysis based on evaluation metrics, the BO-LSTM model was found to have the shortest runtime and highest accuracy. Finally, the dropout algorithm and five-fold time series cross-validation were incorporated into the BO-LSTM model, creating a multi-algorithm-optimized recurrent neural network model for predicting tunneling speed. The results indicate that (1) the Isolation Forest algorithm can conveniently identify outliers while considering the relationship between tunneling speed and other parameters; (2) the improved mean filtering algorithm exhibits better denoising effects on cutterhead speed and tunneling speed; and (3) the multi-algorithm optimized LSTM model exhibits high prediction accuracy and operational efficiency under various geological parameters and different excavation modes. The minimum Mean Absolute Percentage Error (MAPE) prediction result is 8.3%, with an average MAPE prediction result below 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lan发布了新的文献求助10
1秒前
学习。。发布了新的文献求助10
2秒前
852应助11采纳,获得10
3秒前
adeno发布了新的文献求助10
3秒前
4秒前
丘比特应助木习习采纳,获得10
4秒前
yyjw发布了新的文献求助10
5秒前
lxl发布了新的文献求助10
5秒前
6秒前
6秒前
Akim应助小薇丸子采纳,获得10
6秒前
weiyue发布了新的文献求助10
7秒前
7秒前
华仔应助摆烂的雨雨采纳,获得10
7秒前
10秒前
碧蓝的大有完成签到,获得积分10
10秒前
隐形曼青应助奇异果采纳,获得10
11秒前
科研通AI5应助华小夫采纳,获得10
11秒前
天真鹤发布了新的文献求助20
11秒前
烟花应助生物科研小白采纳,获得10
12秒前
qiuyouze发布了新的文献求助10
13秒前
牧妙芹发布了新的文献求助10
13秒前
王111完成签到,获得积分10
13秒前
无花果应助weiyue采纳,获得10
16秒前
科研通AI5应助sssssss采纳,获得10
16秒前
lanminghao完成签到 ,获得积分10
16秒前
XXX完成签到,获得积分10
17秒前
17秒前
17秒前
lxl完成签到,获得积分10
17秒前
18秒前
18秒前
静心404完成签到,获得积分10
19秒前
隐形曼青应助小二采纳,获得10
21秒前
李苗应助lihanzhang1047采纳,获得10
22秒前
wang1457完成签到,获得积分10
22秒前
22秒前
静心404发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855068
求助须知:如何正确求助?哪些是违规求助? 4152195
关于积分的说明 12866857
捐赠科研通 3901757
什么是DOI,文献DOI怎么找? 2143921
邀请新用户注册赠送积分活动 1163572
关于科研通互助平台的介绍 1064089