亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Analyzing the Relationship Between Well-Being, Academic Performance with Large-Scale Assessment Data

比例(比率) 计算机科学 人工智能 机器学习 数据科学 心理学 地理 地图学
作者
Chong Ho Yu,Zizhong Xiao,Janet Hanson
标识
DOI:10.1007/978-981-99-9379-6_13
摘要

Educational researchers have been utilizing large-scale assessment data from cross-cultural studies. However, the complexity of these big data poses several challenges to traditional statistical models, despite the benefits they provide to decision support and pedagogical practice. First, the sample size and the statistical power of these archival data are so huge that any trivial effect might be misidentified as significant. Consequently, this overfit model has low generalizability, contributing to the replication crisis. Second, in addition to academic performance test scores, these large-scale assessments also collect data about students' family backgrounds, living environment, educational institution characteristics, and other aspects associated with learning, such as motivation, engagement, and well-being. This curse of high dimensionality often results in multicollinearity, thus yielding an unstable model. To rectify the situation, machine learning methods, such as neural networks, bagging, gradient boosting, and XGBoost can localize errors by partitioning the data into subsets and generating numerous submodels. The final model is a synthesis of repeated analyses and therefore big data can be processed effectively. Further, through regularization machine learning penalizes complexity, preventing irrelevant predictors from entering the model. An analysis of the relationship between well-being and academic performance based on 2018 PISA data is presented in this chapter as an example of how machine learning can be applied to educational research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
高高菠萝完成签到 ,获得积分10
6秒前
冰子完成签到 ,获得积分10
8秒前
超级无敌万能小金毛完成签到,获得积分10
9秒前
11秒前
邱邱完成签到,获得积分20
14秒前
15秒前
Omni发布了新的文献求助10
16秒前
18秒前
在水一方应助邱邱采纳,获得10
19秒前
张emo发布了新的文献求助10
22秒前
火火完成签到 ,获得积分10
30秒前
单纯的易文完成签到 ,获得积分10
31秒前
张emo完成签到,获得积分10
33秒前
35秒前
Darlene发布了新的文献求助10
39秒前
Danish完成签到,获得积分10
40秒前
53秒前
58秒前
小白完成签到,获得积分10
1分钟前
小二郎应助juju采纳,获得10
1分钟前
Skye完成签到 ,获得积分10
1分钟前
tracyzhang完成签到 ,获得积分10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
juju发布了新的文献求助10
1分钟前
1分钟前
492357816完成签到,获得积分10
1分钟前
zkx完成签到 ,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
诚心从露完成签到,获得积分10
1分钟前
刻苦的溪流完成签到,获得积分10
1分钟前
乐乐应助优美的冰萍采纳,获得10
1分钟前
Yummy发布了新的文献求助10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
NexusExplorer应助Yummy采纳,获得10
1分钟前
姚琛完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795491
求助须知:如何正确求助?哪些是违规求助? 3340528
关于积分的说明 10300441
捐赠科研通 3057048
什么是DOI,文献DOI怎么找? 1677395
邀请新用户注册赠送积分活动 805398
科研通“疑难数据库(出版商)”最低求助积分说明 762491