Enhancing Aspect Category Detection Through Hybridised Contextualised Neural Language Models: A Case Study In Multi-Label Text Classification

计算机科学 自然语言处理 人工智能 语言学 哲学
作者
Kürşat Mustafa Karaoğlan,Oğuz Fındık
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (6): 2257-2269 被引量:3
标识
DOI:10.1093/comjnl/bxae004
摘要

Abstract Recently, the field of Natural Language Processing (NLP) has made significant progress with the evolution of Contextualised Neural Language Models (CNLMs) and the emergence of large LMs. Traditional and static language models exhibit limitations in tasks demanding contextual comprehension due to their reliance on fixed representations. CNLMs such as BERT and Semantic Folding aim to produce feature-rich representations by considering a broader linguistic context. In this paper, Deep Learning-based Aspect Category Detection approaches are introduced to perform text classification. The study extensively assesses classification model performance, emphasising enhanced representativeness and optimised feature extraction resolution using CNLMs and their hybridised variants. The effectiveness of the proposed approaches is evaluated on benchmark datasets of 4500 reviews from the laptop and restaurant domains. The results show that the proposed approaches using hybridised CNLMs outperform state-of-the-art methods with an f-score of 0.85 for the laptop and f-scores higher than 0.90 for the restaurant dataset. This study represents a pioneering work as one of the initial research efforts aiming to jointly evaluate the representation performance of CNLMs with different architectures to determine their classification capabilities. The findings indicate that the proposed approaches can enable the development of more effective classification models in various NLP tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然夏槐发布了新的文献求助30
刚刚
小羊佳佳完成签到,获得积分10
1秒前
1秒前
3秒前
4秒前
6秒前
6秒前
Lasse1992应助狂野东蒽采纳,获得10
6秒前
万能图书馆应助幸福大碗采纳,获得10
7秒前
7秒前
7秒前
慕青应助lucky采纳,获得10
8秒前
1917完成签到,获得积分10
9秒前
yao发布了新的文献求助10
10秒前
12秒前
健壮念寒发布了新的文献求助10
12秒前
DQY发布了新的文献求助10
13秒前
15秒前
1917发布了新的文献求助10
16秒前
冰魂应助张小斌采纳,获得20
17秒前
18秒前
zpeng完成签到,获得积分10
20秒前
feilei发布了新的文献求助10
20秒前
KD发布了新的文献求助10
21秒前
ZhouTY完成签到,获得积分10
22秒前
沉静的安青完成签到 ,获得积分10
22秒前
23秒前
健壮念寒完成签到,获得积分20
23秒前
折花浅笑完成签到,获得积分10
25秒前
27秒前
27秒前
山东老铁发布了新的文献求助10
27秒前
桐桐应助超帅的从菡采纳,获得10
29秒前
CC完成签到,获得积分10
29秒前
aaa应助笑点低菲鹰采纳,获得10
29秒前
30秒前
orixero应助imchenyin采纳,获得10
30秒前
gy发布了新的文献求助30
31秒前
落葵完成签到,获得积分10
31秒前
31秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924