Machine Learning in 3D Printing

3D打印 计算机科学 人工智能 工程制图 工程类 机械工程
作者
Mohammadali Rastak,Saeedeh Vanaei,Shohreh Vanaei,Mohammad Moezzibadi
标识
DOI:10.1002/9781394150335.ch14
摘要

Chapter 14 Machine Learning in 3D Printing Mohammadali Rastak, Mohammadali Rastak Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, CanadaSearch for more papers by this authorSaeedeh Vanaei, Saeedeh Vanaei Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, 43606 USASearch for more papers by this authorShohreh Vanaei, Shohreh Vanaei Department of Bioengineering, Northeastern University, Boston, MA, USASearch for more papers by this authorMohammad Moezzibadi, Mohammad Moezzibadi Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, Paris, 75013 FranceSearch for more papers by this author Mohammadali Rastak, Mohammadali Rastak Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec, CanadaSearch for more papers by this authorSaeedeh Vanaei, Saeedeh Vanaei Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, 43606 USASearch for more papers by this authorShohreh Vanaei, Shohreh Vanaei Department of Bioengineering, Northeastern University, Boston, MA, USASearch for more papers by this authorMohammad Moezzibadi, Mohammad Moezzibadi Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, Paris, 75013 FranceSearch for more papers by this author Book Editor(s):Hamid Reza Vanaei, Hamid Reza Vanaei HESAM Université, 151 Boulevard de l'Hôpital, Paris, 75013 FranceSearch for more papers by this authorSofiane Khelladi, Sofiane Khelladi HESAM Université, 151 Boulevard de l'Hôpital, Paris, 75013 FranceSearch for more papers by this authorAbbas Tcharkhtchi, Abbas Tcharkhtchi HESAM Université, 151 Boulevard de l'Hôpital, Paris, 75013 FranceSearch for more papers by this author First published: 01 March 2024 https://doi.org/10.1002/9781394150335.ch14 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary In just a brief span of time, 3D printing process has made significant strides across various applications. A fundamental advantage of 3D printing lies in its ability to effortlessly produce intricate geometries. In this context, a central issue within 3D printing pertains to precision and achieving minimal tolerances using this technique. Given the mechanism of the 3D printing process, the resulting components can exhibit deviations from the original CAD model, leading to an increased incidence of defects, and reduced production output compared to other methods. Porosity, fractures, and surface unevenness are prevailing challenges inherent to 3D printing that are generally inevitable due to the manufacturing process. Among the available alternatives, compensating for these issues in the automotive industry seems to offer the most advantageous balance, considering aspects like cost and feasibility of implementation. Consequently, identifying discrepancies during the manufacturing process (real-time defect diagnosis and monitoring) and subsequently implementing corrective measures can be executed nearly simultaneously. In the realm of 3D printing, a modern approach involving artificial intelligence (AI), particularly machine learning (ML), has recently emerged to address the challenge of real-time monitoring. Moreover, this approach can extend to optimizing processing parameters, estimating costs, and addressing other pertinent considerations. ML holds the potential to train models for predicting outcomes based on unseen data, especially when abundant data and features are available. This chapter delves into the techniques and recent advancements concerning the integration of AI/ML in 3D printing, as well as the recent progress in monitoring the printing process. References Goh , G.D. , Sing , S.L. , and Yeong , W.Y. ( 2021 ). A review on machine learning in 3D printing: applications, potential, and challenges . Artificial Intelligence Review 54 ( 1 ): 63 – 94 . 10.1007/s10462-020-09876-9 Web of Science®Google Scholar Meng , L. , McWilliams , B. , Jarosinski , W. et al. ( 2020 ). Machine learning in additive manufacturing: a review . JOM 72 ( 6 ): 2363 – 2377 . 10.1007/s11837-020-04155-y Web of Science®Google Scholar Wang , C. , Tan , X.P. , Tor , S.B. , and Lim , C.S. ( 2020 ). Machine learning in additive manufacturing: state-of-the-art and perspectives . Additive Manufacturing 36 : 101538. 10.1016/j.addma.2020.101538 Web of Science®Google Scholar Zhu , Z. , Anwer , N. , Huang , Q. , and Mathieu , L. ( 2018 ). Machine learning in tolerancing for additive manufacturing . CIRP Annals 67 ( 1 ): 157 – 160 . 10.1016/j.cirp.2018.04.119 Web of Science®Google Scholar Tapia , G. , Khairallah , S. , Matthews , M. et al. ( 2018 ). Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel . The International Journal of Advanced Manufacturing Technology 94 ( 9 ): 3591 – 3603 . 10.1007/s00170-017-1045-z Web of Science®Google Scholar Tapia , G. , Elwany , A.H. , and Sang , H. ( 2016 ). Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models . Additive Manufacturing 12 : 282 – 290 . 10.1016/j.addma.2016.05.009 CASWeb of Science®Google Scholar Kamath , C. ( 2016 ). Data mining and statistical inference in selective laser melting . The International Journal of Advanced Manufacturing Technology 86 ( 5 ): 1659 – 1677 . 10.1007/s00170-015-8289-2 Web of Science®Google Scholar Meng , L. and Zhang , J. ( 2020 ). Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model . JOM 72 ( 1 ): 420 – 428 . 10.1007/s11837-019-03792-2 CASWeb of Science®Google Scholar Caiazzo , F. and Caggiano , A. ( 2018 ). Laser direct metal deposition of 2024 al alloy: trace geometry prediction via machine learning . Materials 11 ( 3 ): 444 . 10.3390/ma11030444 PubMedWeb of Science®Google Scholar Zhang , J. , Wang , P. , and Gao , R.X. ( 2019 ). Deep learning-based tensile strength prediction in fused deposition modeling . Computers in Industry 107 : 11 – 21 . 10.1016/j.compind.2019.01.011 Web of Science®Google Scholar Li , Z. , Zhang , Z. , Shi , J. , and Wu , D. ( 2019 ). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning . Robotics and Computer-Integrated Manufacturing 57 : 488 – 495 . 10.1016/j.rcim.2019.01.004 Web of Science®Google Scholar Mozaffar , M. , Paul , A. , Al-Bahrani , R. et al. ( 2018 ). Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks . Manufacturing Letters 18 : 35 – 39 . 10.1016/j.mfglet.2018.10.002 Google Scholar Song , L. , Huang , W. , Han , X. , and Mazumder , J. ( 2016 ). Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing . IEEE Transactions on Industrial Electronics 64 ( 1 ): 633 – 642 . 10.1109/TIE.2016.2608318 Web of Science®Google Scholar Wang , T. , Kwok , T.-H. , Zhou , C. , and Vader , S. ( 2018 ). In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing . Journal of Manufacturing Systems 47 : 83 – 92 . 10.1016/j.jmsy.2018.04.003 CASWeb of Science®Google Scholar Yao , X. , Moon , S.K. , and Bi , G. ( 2017 ). A hybrid machine learning approach for additive manufacturing design feature recommendation . Rapid Prototyping Journal 23 ( 6 ): 983 – 997 . https://doi.org/10.1108/RPJ-03-2016-0041 . 10.1108/RPJ-03-2016-0041 Web of Science®Google Scholar Zhang , Y. , Hong , G.S. , Ye , D. et al. ( 2018 ). Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion am process monitoring . Materials & Design 156 : 458 – 469 . 10.1016/j.matdes.2018.07.002 Web of Science®Google Scholar Scime , L. and Beuth , J. ( 2018 ). Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm . Additive Manufacturing 19 : 114 – 126 . 10.1016/j.addma.2017.11.009 Web of Science®Google Scholar Khanzadeh , M. , Chowdhury , S. , Marufuzzaman , M. et al. ( 2018 ). Porosity prediction: supervised-learning of thermal history for direct laser deposition . Journal of Manufacturing Systems 47 : 69 – 82 . 10.1016/j.jmsy.2018.04.001 Web of Science®Google Scholar Samie Tootooni , M. , Dsouza , A. , Donovan , R. et al. ( 2017 ). Classifying the dimensional variation in additive manufactured parts from laser-scanned three-dimensional point cloud data using machine learning approaches . Journal of Manufacturing Science and Engineering 139 ( 9 ): 091005. 10.1115/1.4036641 Web of Science®Google Scholar Aoyagi , K. , Wang , H. , Sudo , H. , and Chiba , A. ( 2019 ). Simple method to construct process maps for additive manufacturing using a support vector machine . Additive Manufacturing 27 : 353 – 362 . 10.1016/j.addma.2019.03.013 CASWeb of Science®Google Scholar Ye , D. , Hong , G.S. , Zhang , Y. et al. ( 2018 ). Defect detection in selective laser melting technology by acoustic signals with deep belief networks . The International Journal of Advanced Manufacturing Technology 96 ( 5 ): 2791 – 2801 . 10.1007/s00170-018-1728-0 Web of Science®Google Scholar Shen , Z. , Shang , X. , Zhao , M. et al. ( 2019 ). A learning-based framework for error compensation in 3D printing . IEEE Transactions on Cybernetics 49 ( 11 ): 4042 – 4050 . 10.1109/TCYB.2019.2898553 PubMedWeb of Science®Google Scholar Jafari-Marandi , R. , Khanzadeh , M. , Tian , W. et al. ( 2019 ). From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing . Journal of Manufacturing Systems 51 : 29 – 41 . 10.1016/j.jmsy.2019.02.005 Web of Science®Google Scholar Gobert , C. , Reutzel , E.W. , Petrich , J. et al. ( 2018 ). Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging . Additive Manufacturing 21 : 517 – 528 . 10.1016/j.addma.2018.04.005 Web of Science®Google Scholar Angelone , R. , Caggiano , A. , Teti , R. et al. ( 2020 ). Bio-intelligent selective laser melting system based on convolutional neural networks for in-process fault identification . Procedia CIRP 88 : 612 – 617 . 10.1016/j.procir.2020.05.107 Google Scholar Shevchik , S.A. , Kenel , C. , Leinenbach , C. , and Wasmer , K. ( 2018 ). Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks . Additive Manufacturing 21 : 598 – 604 . 10.1016/j.addma.2017.11.012 Web of Science®Google Scholar Shahrubudin , N. , Lee , T.C. , and Ramlan , R. ( 2019 ). An overview on 3D printing technology: technological, materials, and applications . Procedia Manufacturing 35 : 1286 – 1296 . 10.1016/j.promfg.2019.06.089 Google Scholar Ngo , T.D. , Kashani , A. , Imbalzano , G. et al. ( 2018 ). Additive manufacturing (3D printing): a review of materials, methods, applications and challenges . Composites Part B: Engineering 143 : 172 – 196 . 10.1016/j.compositesb.2018.02.012 CASWeb of Science®Google Scholar Talaat , F.M. and Hassan , E. ( 2021 ). Artificial intelligence in 3D printing . In: Enabling Machine Learning Applications in Data Science , Algorithms for Intelligent Systems (ed. A.E. Hassanien , A. Darwish , S.M. Abd El-Kader , and D.A. Alboaneen ), 77 – 88 . Singapore : Springer . 10.1007/978-981-33-6129-4_6 Google Scholar Baumers , M. and Ozcan , E. ( 2016 ). Scope for machine learning in digital manufacturing . arXiv preprint arXiv:1609.05835. Google Scholar Learned-Miller , E.G. ( 2014 ). Introduction to Supervised Learning. I: Department of Computer Science , 3 . University of Massachusetts . Google Scholar Bousquet , O. , von Luxburg , U. , and Rätsch , G. ( 2011 ). Advanced Lectures on Machine Learning: ML Summer Schools 2003 , Canberra, Australia, February 2–14, 2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures, vol. 3176 . Springer . Google Scholar Jordan , M.I. and Mitchell , T.M. ( 2015 ). Machine learning: trends, perspectives, and prospects . Science 349 ( 6245 ): 255 – 260 . 10.1126/science.aaa8415 CASPubMedWeb of Science®Google Scholar Bonaccorso , G. ( 2017 ). Machine Learning Algorithms . Packt Publishing Ltd. Google Scholar El Naqa , I. and Murphy , M.J. ( 2015 ). What is machine learning? In: Machine Learning in Radiation Oncology (ed. I. El Naqa , R. Li , and M. Murphy ), 3 – 11 . Cham : Springer . 10.1007/978-3-319-18305-3_1 Google Scholar Soofi , A.A. and Awan , A. ( 2017 ). Classification techniques in machine learning: applications and issues . Journal of Basic & Applied Sciences 13 : 459 – 465 . 10.6000/1927-5129.2017.13.76 Google Scholar Yildirim , P. ( 2015 ). Filter based feature selection methods for prediction of risks in hepatitis disease . International Journal of Machine Learning and Computing 5 ( 4 ): 258 . 10.7763/IJMLC.2015.V5.517 Google Scholar Mulak , P. and Talhar , N. ( 2015 ). Analysis of distance measures using K-nearest neighbor algorithm on KDD dataset . International Journal of Science and Research 4 ( 7 ): 2319 – 7064 . Google Scholar Feng , G. , Guo , J. , Jing , B.-Y. , and Sun , T. ( 2015 ). Feature subset selection using naive Bayes for text classification . Pattern Recognition Letters 65 : 109 – 115 . 10.1016/j.patrec.2015.07.028 Web of Science®Google Scholar Khan , M.F. , Alam , A. , Siddiqui , M.A. et al. ( 2021 ). Real-time defect detection in 3D printing using machine learning . Materials Today: Proceedings 42 : 521 – 528 . 10.1016/j.matpr.2020.10.482 Google Scholar Wu , M. , Phoha , V.V. , Moon , Y.B. , and Belman , A.K. ( 2016 ). Detecting malicious defects in 3D printing process using machine learning and image classification . In: ASME International Mechanical Engineering Congress and Exposition , vol. 50688 , V014T07A004 . American Society of Mechanical Engineers . 10.1115/IMECE2016-67641 Google Scholar Liu , Y. , Zhao , T. , Ju , W. , and Shi , S. ( 2017 ). Materials discovery and design using machine learning . Journal of Materiomics 3 ( 3 ): 159 – 177 . 10.1016/j.jmat.2017.08.002 Web of Science®Google Scholar Nasiri , S. and Khosravani , M.R. ( 2021 ). Machine learning in predicting mechanical behavior of additively manufactured parts . Journal of Materials Research and Technology 14 : 1137 – 1153 . 10.1016/j.jmrt.2021.07.004 CASWeb of Science®Google Scholar Silbernagel , C. , Aremu , A. , and Ashcroft , I. ( 2020 ). Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing . Rapid Prototyping Journal 26 ( 4 ): 625 – 637 . 10.1108/RPJ-08-2019-0213 Web of Science®Google Scholar Francis , J. and Bian , L. ( 2019 ). Deep learning for distortion prediction in laser-based additive manufacturing using big data . Manufacturing Letters 20 : 10 – 14 . 10.1016/j.mfglet.2019.02.001 Google Scholar Chan , S.L. , Lu , Y. , and Wang , Y. ( 2018 ). Data-driven cost estimation for additive manufacturing in cybermanufacturing . Journal of Manufacturing Systems 46 : 115 – 126 . 10.1016/j.jmsy.2017.12.001 Web of Science®Google Scholar Industrial Strategies and Solutions for 3D Printing: Applications and Optimization ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cyris发布了新的文献求助10
1秒前
1秒前
otaro完成签到,获得积分10
2秒前
wzhang完成签到,获得积分10
3秒前
Jinna706完成签到,获得积分0
3秒前
xxl发布了新的文献求助10
3秒前
星光不负赶路人完成签到,获得积分10
3秒前
虚心梦秋发布了新的文献求助10
4秒前
祖问筠完成签到,获得积分10
5秒前
K2L完成签到,获得积分10
5秒前
生动的战斗机完成签到,获得积分10
5秒前
6秒前
7秒前
鳗鱼鸽子完成签到,获得积分10
7秒前
小费发布了新的文献求助30
7秒前
烟花应助lizh187采纳,获得10
7秒前
7秒前
青鸟发布了新的文献求助10
8秒前
2429739856发布了新的文献求助30
8秒前
9秒前
11秒前
minzi完成签到,获得积分10
12秒前
田様应助海棠采纳,获得10
12秒前
sxl发布了新的文献求助10
12秒前
anna发布了新的文献求助10
12秒前
虚心梦秋完成签到,获得积分10
13秒前
xiaofang完成签到,获得积分10
13秒前
niuniuff66发布了新的文献求助10
15秒前
16秒前
爱吃火锅的胖墩度完成签到,获得积分20
16秒前
NexusExplorer应助快乐小白菜采纳,获得10
16秒前
NexusExplorer应助小单采纳,获得10
16秒前
17秒前
17秒前
minzi发布了新的文献求助10
18秒前
18秒前
Kim完成签到,获得积分10
19秒前
我才是孙悟空完成签到,获得积分10
19秒前
ddz关闭了ddz文献求助
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3925819
求助须知:如何正确求助?哪些是违规求助? 3470298
关于积分的说明 10963265
捐赠科研通 3199975
什么是DOI,文献DOI怎么找? 1768049
邀请新用户注册赠送积分活动 857206
科研通“疑难数据库(出版商)”最低求助积分说明 795992