亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Solving Pursuit/Evasion Game Along Elliptical Orbit by Providing Precise Gradient

椭圆轨道 轨道(动力学) 追逃 计算机科学 航空航天工程 定轨 逃避(道德) 控制理论(社会学) 物理 经典力学 人工智能 控制(管理) 工程类 卫星 生物 免疫系统 免疫学
作者
Bo Pang,Changxuan Wen,Hongwei Han,Dong Qiao
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:47 (4): 797-807 被引量:19
标识
DOI:10.2514/1.g007025
摘要

No AccessEngineering NotesSolving Pursuit/Evasion Game Along Elliptical Orbit by Providing Precise GradientBo Pang, Changxuan Wen, Hongwei Han and Dong QiaoBo Pang https://orcid.org/0000-0003-3351-7041Beijing Institute of Technology, 100081 Beijing, People's Republic of China, Changxuan Wen https://orcid.org/0000-0002-2293-4395Beijing Institute of Technology, 100081 Beijing, People's Republic of China, Hongwei HanBeijing Institute of Technology, 100081 Beijing, People's Republic of China and Dong QiaoBeijing Institute of Technology, 100081 Beijing, People's Republic of ChinaPublished Online:4 Mar 2024https://doi.org/10.2514/1.G007025SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Isaacs R., Differential Games, Wiley, New York, 1965, pp. 278–280. Google Scholar[2] Chen R. H., Speyer J. L. and Lianos D., "Optimal Intercept Missile Guidance Strategies with Autopilot Lag," Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1264–1272.https://doi.org/10.2514/1.44618 LinkGoogle Scholar[3] Carr R. W., Cobb R. G., Pachter M. and Pierce S., "Solution of a Pursuit-Evasion Game Using a Near-Optimal Strategy," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 4, 2018, pp. 841–850.https://doi.org/10.2514/1.G002911 LinkGoogle Scholar[4] Olsder T. B., Dynamic Non-Cooperative Game Theory, Academic Press, New York, 1999, pp. 423–469. Google Scholar[5] Sun W., Tsiotras P., Lolla T., Subramani D. N. and Lermusiaux P. F. J., "Multiple-Pursuer/One-Evader Pursuit-Evasion Game in Dynamic Flowfields," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1627–1637.https://doi.org/10.2514/1.G002125 LinkGoogle Scholar[6] Makkapati V. R., Sun W. and Tsiotras P., "Pursuit-Evasion Problems Involving Two Pursuers and One Evader," 2018 AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-2107, 2018. https://doi.org/10.2514/6.2018-2107 Google Scholar[7] Pontani M. and Conway B. A., "Numerical Solution of the Three-Dimensional Orbital Pursuit-Evasion Game," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, 2009, pp. 474–487.https://doi.org/10.2514/1.37962 LinkGoogle Scholar[8] Pontani M., "Numerical Solution of Orbital Combat Games Involving Missiles and Spacecraft," Dynamic Games and Applications, Vol. 1, Dec. 2011, pp. 534–557.https://doi.org/10.1007/s13235-011-0024-5 CrossrefGoogle Scholar[9] Sun S., Zhang Q., Loxton R. and Li B., "Numerical Solution of a Pursuit-Evasion Differential Game Involving Two Spacecraft in Low Earth Orbit," Journal of Industrial and Management Optimization, Vol. 11, No. 4, 2015, pp. 1127–1147. https://doi.org/10.3934/jimo.2015.11.1127 CrossrefGoogle Scholar[10] Hafer W. T., Reed H. L., Turner J. D. and Pham K., "Sensitivity Methods Applied to Orbital Pursuit Evasion," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1118–1126.https://doi.org/10.2514/1.G000832 LinkGoogle Scholar[11] Shen H. and Casalino L., "Revisit of the Three-Dimensional Orbital Pursuit-Evasion Game," Journal of Guidance, Control, and Dynamics, Vol. 41, No. 8, 2018, pp. 1823–1831.https://doi.org/10.2514/1.G003127 LinkGoogle Scholar[12] Gong H., Gong S. and Li J., "Pursuit-Evasion Game for Satellites Based on Continuous Thrust Reachable Domain," IEEE Aerospace and Electronic Systems Magazine, Vol. 56, No. 6, 2020, pp. 4626–4637.https://doi.org/10.1109/TAES.2020.2998197 Google Scholar[13] Venigalla C. and Scheeres D., "Spacecraft Rendezvous and Pursuit/Evasion Analysis Using Reachable Sets," 2018 Space Flight Mechanics Meeting, AIAA Paper 2018-0219, 2018.https://doi.org/10.2514/6.2018-0219 Google Scholar[14] Venigalla C. and Scheeres D. J., "Delta-V-Based Analysis of Spacecraft Pursuit-Evasion Games," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 11, 2021, pp. 1961–1971.https://doi.org/10.2514/1.G005901 LinkGoogle Scholar[15] Jagat A. and Sinclair A. J., "Optimization of Spacecraft Pursuit-Evasion Game Trajectories in the Euler-Hill Reference Frame," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2014-4131, 2014.https://doi.org/10.2514/6.2014-4131 Google Scholar[16] Jagat A. and Sinclair A. J., "Nonlinear Control for Spacecraft Pursuit-Evasion Game Using the State-Dependent Riccati Equation Method," IEEE Aerospace and Electronic Systems Magazine, Vol. 53, No. 6, 2017, pp. 3032–3042.https://doi.org/10.1109/TAES.2017.2725498 Google Scholar[17] Woodbury T. D. and Hurtado J. E., "Adaptive Play via Estimation in Uncertain Nonzero-Sum Orbital Pursuit Evasion Games," AIAA SPACE and Astronautics Forum and Exposition, AIAA Paper 2017-5247, 2017.https://doi.org/10.2514/6.2017-5247 Google Scholar[18] Stupik J., Pontani M. and Conway B., "Optimal Pursuit/Evasion Spacecraft Trajectories in the Hill Reference Frame," AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2012-4882, 2012.https://doi.org/10.2514/6.2012-4882 Google Scholar[19] Li Z., Zhu H., Yang Z. and Luo Y., "A Dimension-Reduction Solution of Free-Time Differential Games for Spacecraft Pursuit-Evasion," Acta Astronautica, Vol. 163, Oct. 2019, pp. 201–210.https://doi.org/10.1016/j.actaastro.2019.01.011 CrossrefGoogle Scholar[20] Li Z., Zhu H., Yang Z. and Luo Y., "Saddle Point of Orbital Pursuit-Evasion Game Under J2-Perturbed Dynamics," Journal of Guidance, Control, and Dynamics, Vol. 43, No. 9, 2020, pp. 1733–1739.https://doi.org/10.2514/1.G004459 LinkGoogle Scholar[21] Prince E. R., Hess J. A., Cobb R. G. and Carr R. W., "Elliptical Orbit Proximity Operations Differential Games," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 7, 2019, pp. 1458–1472.https://doi.org/10.2514/1.G004031 LinkGoogle Scholar[22] Jiang F., Baoyin H. and Li J., "Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 245–258.https://doi.org/10.2514/1.52476 LinkGoogle Scholar[23] Pan B., Lu P., Pan X. and Ma Y., "Double-Homotopy Method for Solving Optimal Control Problems," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1706–1720.https://doi.org/10.2514/1.G001553 LinkGoogle Scholar[24] Pan B., Pan X. and Lu P., "Finding Best Solution in Low-Thrust Trajectory Optimization by Two-Phase Homotopy," Journal of Spacecraft and Rockets, Vol. 56, No. 1, 2019, pp. 283–291.https://doi.org/10.2514/1.A34144 LinkGoogle Scholar[25] Yamanaka K. and Ankersen F., "New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 60–66.https://doi.org/10.2514/2.4875 LinkGoogle Scholar[26] Barnes J. G. P., "An Algorithm for Solving Non-Linear Equations Based on the Secant Method," Computer Journal, Vol. 8, No. 1, 1965, pp. 66–72.https://doi.org/10.1093/comjnl/8.1.66 Google Scholar[27] Allgower E. and Georg K., Numerical Continuation Methods-An Introduction, Vol. 25, Springer, Berlin, 1990, pp. 1–60.https://doi.org/10.1007/978-3-642-61257-2 Google Scholar[28] Pang B. and Wen C., "Reachable Set of Spacecraft with Finite Thrust Based on Grid Method," IEEE Aerospace and Electronic Systems Magazine, Vol. 58, No. 4, 2021, pp. 2720–2731.https://doi.org/10.1109/TAES.2021.3138373 Google Scholar[29] Di Cairano S., Park H. and Kolmanovsky I., "Model Predictive Control Approach for Guidance of Spacecraft Rendezvous and Proximity Maneuvering," International Journal of Robust and Nonlinear Control, Vol. 22, No. 12, 2012, pp. 1398–1427.https://doi.org/10.1002/rnc.2827 CrossrefGoogle Scholar[30] Meng Y., Chen Q. and Ni Q., "A New Geometric Guidance Approach to Spacecraft Near Distance Rendezvous Problem," Acta Astronautica, Vol. 129, Dec. 2016, pp. 374–383.https://doi.org/10.1016/j.actaastro.2016.09.032 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance Metrics CrossmarkInformationCopyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesApplied MathematicsAstrodynamicsAstronauticsComputational Fluid DynamicsControl TheoryFluid DynamicsGeneral PhysicsGuidance, Navigation, and Control SystemsMathematical AnalysisNumerical AnalysisOptimal Control TheoryOrbital ManeuversSpace OrbitStructures, Design and Test KeywordsOrbital ManeuversNumerical IntegrationApplied MathematicsPontryagin's Maximum PrincipleLinear Quadratic RegulatorParticle Swarm OptimizationSatellitesDifferential EquationsOrbital Pursuit Evasion GameGradient MethodAcknowledgmentThis work was supported by the National Natural Science Foundation of China (grant numbers 11702293 and 12102037).Digital Received8 June 2022Accepted12 January 2024Published online4 March 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪明火龙果完成签到,获得积分10
6秒前
16秒前
23秒前
33秒前
今后应助rebeycca采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
AliEmbark完成签到,获得积分10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
抹不掉的记忆完成签到,获得积分10
2分钟前
Swear完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Endless完成签到,获得积分10
3分钟前
安详的尔岚完成签到,获得积分10
3分钟前
nenoaowu发布了新的文献求助10
3分钟前
NI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
Omni发布了新的文献求助20
4分钟前
岂曰无衣发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Ava应助Thorns采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457