Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap

计算机科学 数据科学 人工智能 领域(数学分析) 管理科学 工程类 数学 数学分析
作者
Xingyu Wu,Sheng-hao Wu,Jibin Wu,Feng Liang,Kay Chen Tan
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2401.10034
摘要

Large Language Models (LLMs) have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and Evolutionary Algorithms (EAs), despite differing in objectives and methodologies, share a common pursuit of applicability in complex problems. Meanwhile, EA can provide an optimization framework for LLM's further enhancement under black-box settings, empowering LLM with flexible global search capacities. On the other hand, the abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches. Furthermore, the text processing and generative capabilities of LLMs would aid in deploying EAs across a wide range of tasks. Based on these complementary advantages, this paper provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues: LLM-enhanced EA and EA-enhanced LLM. Some integrated synergy methods are further introduced to exemplify the amalgamation of LLMs and EAs in diverse scenarios, including neural architecture search, code generation, software engineering, and various generation tasks. As the first comprehensive review focused on the EA research in the era of LLMs, this paper provides a foundational stepping stone for understanding the collaborative potential of LLMs and EAs. By meticulous categorization and critical analysis, we contribute to the ongoing discourse on the cross-disciplinary study of these two powerful paradigms. The identified challenges and future directions offer guidance for researchers and practitioners aiming to unlock the full potential of this innovative collaboration in propelling advancements in optimization and artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ziyi_Xu完成签到,获得积分10
刚刚
2秒前
Ricardo完成签到,获得积分10
3秒前
Orange应助今晚吃什么呢采纳,获得10
3秒前
AirJia完成签到,获得积分10
3秒前
5秒前
承影完成签到,获得积分10
5秒前
小二郎应助嫩牛五方采纳,获得10
6秒前
6秒前
可爱的函函应助errui采纳,获得10
6秒前
7秒前
XY给XY的求助进行了留言
7秒前
Yz_完成签到,获得积分20
8秒前
随便起个名完成签到,获得积分10
8秒前
UPUP0707完成签到,获得积分10
9秒前
科研通AI5应助柔弱如风采纳,获得10
9秒前
9秒前
卡皮巴拉发布了新的文献求助10
10秒前
珂儿完成签到,获得积分10
11秒前
su发布了新的文献求助10
12秒前
12秒前
13秒前
hhhbbb发布了新的文献求助20
14秒前
k123456应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
卡卡西应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
cc应助科研通管家采纳,获得20
15秒前
cc应助科研通管家采纳,获得20
15秒前
所所应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799888
求助须知:如何正确求助?哪些是违规求助? 3345183
关于积分的说明 10324169
捐赠科研通 3061781
什么是DOI,文献DOI怎么找? 1680528
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462