亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel YOLOv8-GAM-Wise-IoU model for automated detection of bridge surface cracks

桥(图论) 计算机科学 正确性 交叉口(航空) 人工智能 卷积神经网络 灵活性(工程) 功能(生物学) 财产(哲学) 目视检查 一般化 工程类 算法 运输工程 医学 进化生物学 数学 生物 统计 认识论 内科学 数学分析 哲学
作者
Chenqin Xiong,Tarek Zayed,Eslam Mohammed Abdelkader
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:414: 135025-135025 被引量:55
标识
DOI:10.1016/j.conbuildmat.2024.135025
摘要

Hong Kong, among the world's most densely populated cities, has witnessed rapid growth in traffic volume, resulting in increased traffic density and vehicle loads. Regular bridge inspections are imperative to ensure human safety and safeguard property. However, conventional visual inspection methods are highly criticized for their critical limitations such as inaccuracy, subjectivity, labor-intensiveness, tediousness, and hazardousness. Cracks are regarded as the most prevalent type of defects encountered during inspection of reinforced concrete bridges. Automated detection of bridge surface cracks is a quite challenging and hectic task due to their random characteristics and usual in complex and non-uniform background textures. Presence. In light of foregoing, this paper proposes a novel computer vision model for concrete bridge crack detection in an attempt to circumvent the critical deficiencies of manual visual inspection. The developed model is envisioned on the use of you only look once version 8 (YOLOv8) architecture, which is cited as one of the most advanced convolutional neural networks structures for multi-scale object detection. Comprising three fundamental components - the backbone, neck, and head, this model introduces the concept of a decoupled head, segregating it into a detection head and a classification head. This design empowers the model with greater flexibility in handling diverse tasks. Moreover, the incorporation of the global attention module (GAM) and the wise intersection over union (IoU) loss function serves to further boost detection correctness of the developed model and amplify its generalization ability. The developed YOLOv8-GAM-Wise-IoU is compared against some of the widely acknowledged one-stage and two-stage deep learning models using the evaluation metrics of precision, recall, F1-score, mean average precision (mAP) and IoU. It outperformed them accomplishing testing precision, recall, F1-score, mAP50, mAP50–95 and mAP75 of 97.4%, 94.9%, 0.96, 98.1%, 76.2%, and 97.8%, respectively. It is also observed that developed model maintains a modest size of 93.20 M resulting in diminishing the computational cost of training and inference processes. This makes it highly deployable in various crack detection pertaining applications. It can be argued that the developed model can contribute notably to the preservation of safety and integrity of reinforced concrete bridges in Hong Kong environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
情怀应助niko采纳,获得10
14秒前
烟花应助niko采纳,获得10
14秒前
19秒前
共享精神应助niko采纳,获得10
20秒前
顾矜应助niko采纳,获得10
20秒前
CipherSage应助niko采纳,获得10
20秒前
万能图书馆应助niko采纳,获得10
20秒前
Orange应助niko采纳,获得10
20秒前
香蕉觅云应助niko采纳,获得10
20秒前
大个应助niko采纳,获得10
20秒前
完美世界应助niko采纳,获得10
20秒前
彭于晏应助niko采纳,获得10
20秒前
搜集达人应助niko采纳,获得10
20秒前
乐乐应助niko采纳,获得10
25秒前
丘比特应助niko采纳,获得10
25秒前
orixero应助niko采纳,获得10
25秒前
大个应助niko采纳,获得10
25秒前
情怀应助niko采纳,获得10
25秒前
李健的粉丝团团长应助niko采纳,获得10
25秒前
可爱的函函应助niko采纳,获得10
25秒前
田様应助niko采纳,获得10
25秒前
上官若男应助niko采纳,获得10
25秒前
科目三应助niko采纳,获得30
25秒前
帅气的马里奥完成签到 ,获得积分10
27秒前
希望天下0贩的0应助niko采纳,获得10
30秒前
丘比特应助niko采纳,获得10
30秒前
乐乐应助niko采纳,获得10
31秒前
赘婿应助niko采纳,获得10
31秒前
CodeCraft应助niko采纳,获得10
31秒前
我是老大应助niko采纳,获得10
31秒前
大模型应助niko采纳,获得10
31秒前
我是老大应助niko采纳,获得10
31秒前
打打应助niko采纳,获得10
31秒前
上官若男应助niko采纳,获得10
31秒前
华仔应助niko采纳,获得10
36秒前
华仔应助niko采纳,获得10
36秒前
bkagyin应助niko采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962