Porous hollow high entropy metal oxides (NiCoCuFeMg)3O4 nanofiber anode for high-performance lithium-ion batteries

阳极 纳米纤维 多孔性 材料科学 离子 电化学 化学工程 金属 静电纺丝 氧化物 纳米技术 复合材料 聚合物 化学 冶金 电极 工程类 物理化学 有机化学
作者
X.L. Wang,Eun Mi Kim,Thillai Govindaraja Senthamaraikannan,Dong‐Hee Lim,Sang Mun Jeong
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:484: 149509-149509 被引量:1
标识
DOI:10.1016/j.cej.2024.149509
摘要

High-entropy metal oxides (HEOs), which incorporate five or more distinct metal ions in a unified crystalline lattice, exhibit outstanding electrochemical capacity and catalytic properties for energy storage and intermediate reaction conversion, making them highly regarded materials for lithium-ion batteries (LIBs). The porous (NiCoCuFeMg)3O4 high entropy metal oxide hollow nanofibers (H-F-HEO) were fabricated using a straightforward electrospinning technique and morphology was controlled using two types of polymers with different decomposition temperatures. The porous hollow structure significantly contributed to the diffusion of lithium ions. The Ni2+, Co2+, and Cu2+ ions played a role in achieving reversible capacity, whereas the Fe2+ ions significantly influenced the high-rate characteristics, and the Mg2+ ions affected the stabilization of the crystal structure. H-F-HEO achieved a high reversible capacity of 907 mA h g−1, maintaining approximately 100 % of its initial capacity at a current density of 2 A/g for over 300 cycles. The extended cycling stability can be ascribed to the unique crystal structure and narrow bandgap of H-F-HEO, as verified by density functional theory (DFT) calculations. Additionally, the electronic states of the metals in the HEO system facilitated strong hybridization with neighboring oxygen atoms, thereby fine-tuning the metallic characteristics and enhancing the conductivity of the HEO system. Therefore, synthesizing of the (NiCoCuFeMg)3O4 HEO provides a strategic approach for fabricating materials with a stable structure and exceptional performance as promising anode materials for next-generation high-performance LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助庾稀采纳,获得10
2秒前
ShuangqingYE发布了新的文献求助10
3秒前
Jasen完成签到 ,获得积分10
3秒前
放肆青春完成签到,获得积分10
3秒前
隔壁老王应助老九采纳,获得20
3秒前
大模型应助橙子采纳,获得10
4秒前
唯美发布了新的文献求助10
5秒前
5秒前
benben055应助愉快的Jerry采纳,获得10
6秒前
7秒前
805完成签到,获得积分10
8秒前
搜集达人应助善良晓蓝采纳,获得10
9秒前
chao完成签到,获得积分20
9秒前
Ava应助王木木采纳,获得10
10秒前
灰色白面鸮完成签到,获得积分10
11秒前
jj完成签到,获得积分10
12秒前
张成明发布了新的文献求助10
12秒前
YE完成签到,获得积分10
12秒前
14秒前
阿柒完成签到,获得积分10
16秒前
17秒前
17秒前
韦威风发布了新的文献求助10
18秒前
benben055应助luchong采纳,获得10
18秒前
18秒前
柯一一应助年轻的茗茗采纳,获得10
18秒前
CodeCraft应助YE采纳,获得10
19秒前
知行合一发布了新的文献求助10
19秒前
liv应助球球采纳,获得20
19秒前
共享精神应助ALBRAHEEIBRAHIM采纳,获得10
19秒前
阿柒发布了新的文献求助10
21秒前
22秒前
12334完成签到,获得积分10
23秒前
24秒前
25秒前
善良晓蓝发布了新的文献求助10
28秒前
庾稀发布了新的文献求助10
29秒前
sjm发布了新的文献求助10
30秒前
33秒前
Leo发布了新的文献求助10
34秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
薩提亞模式團體方案對青年情侶輔導效果之研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2393513
求助须知:如何正确求助?哪些是违规求助? 2097469
关于积分的说明 5285485
捐赠科研通 1825148
什么是DOI,文献DOI怎么找? 910105
版权声明 559943
科研通“疑难数据库(出版商)”最低求助积分说明 486391