Stable Exploration via Imitating Highly Scored Episode-Decayed Exploration Episodes in Procedurally Generated Environments

过度拟合 排名(信息检索) 计算机科学 模仿 人工智能 集合(抽象数据类型) 机器学习 心理学 人工神经网络 神经科学 程序设计语言
作者
Mao Xu,Shuzhi Sam Ge,Dongjie Zhao,Qian Zhao
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1121-1133 被引量:1
标识
DOI:10.1109/tcds.2023.3339215
摘要

Exploring procedurally-generated environments is a formidable challenge for model-free deep reinforcement learning (DRL). One of the state-of-the-art exploration methods, exploration via ranking the episodes (RAPID), assigns episode-level episodic exploration scores to past episodes and makes the DRL agent imitate exploration behaviors from the highly-scored episodes. However, in complex procedurally-generated environments, such continued imitation can hinder RAPID's performance due to the emergence of solidified episodes, i.e., episodes that remain in the highly-scored episode set due to their high scores. These solidified episodes can lead the RAPID DRL agent to overfit, hindering its exploration and performance. To address this, we design an episode-decayed exploration score, which combines the episodic exploration score and an episodic decay factor, to avoid solidifying highly-scored episodes and aid in selecting good exploration episodes. Leveraging this score, we propose exploration via imitating highly-scored episode-decayed exploration episodes (EDEE), an effective and stable exploration method for procedurally-generated environments. EDEE assigns episode-decayed exploration scores to past episodes and stores the highly-scored episodes as good exploration episodes in a small ranking buffer. The DRL agent then imitates good exploration behaviors sampled from this ranking buffer through the exploration-based sampling to reproduce these good exploration behaviors from good exploration episodes. Extensive experiments on procedurally-generated environments, specifically MiniGrid and 3D maze from MiniWorld, and sparse MuJoCo environments show that EDEE significantly outperforms RAPID in terms of final performance and sample efficiency in complex procedurally-generated environments and sparse continuous environments. Moreover, even without extrinsic rewards, EDEE maintains excellent performance in procedurally-generated environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏侯乐枫发布了新的文献求助10
刚刚
lxl98发布了新的文献求助10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
百分之五发布了新的文献求助20
2秒前
今后应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
babuanti完成签到,获得积分10
4秒前
4秒前
7秒前
Docline完成签到,获得积分10
7秒前
拼搏语兰完成签到,获得积分10
7秒前
单身的衫完成签到,获得积分10
8秒前
Yuchaoo发布了新的文献求助10
9秒前
lxl98完成签到,获得积分10
9秒前
称心太阳发布了新的文献求助10
10秒前
清脆泥猴桃完成签到,获得积分10
10秒前
小蘑菇应助lxl98采纳,获得10
12秒前
12秒前
12秒前
CodeCraft应助五个跳舞的人采纳,获得10
13秒前
亚亚发布了新的文献求助10
13秒前
俊逸的蜜蜂完成签到,获得积分10
14秒前
妮子要学习完成签到,获得积分10
15秒前
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836546
求助须知:如何正确求助?哪些是违规求助? 3378807
关于积分的说明 10506358
捐赠科研通 3098571
什么是DOI,文献DOI怎么找? 1706572
邀请新用户注册赠送积分活动 821075
科研通“疑难数据库(出版商)”最低求助积分说明 772431