电解质
阳极
材料科学
电化学
锌
图层(电子)
接口(物质)
金属
化学工程
复合材料
电极
化学
冶金
润湿
物理化学
工程类
坐滴法
作者
Chaozheng Liu,Wangwang Xu,Lei Zhang,Daotong Zhang,Weina Xu,Xiaobin Liao,Weimin Chen,Yizhong Cao,Mei‐Chun Li,Changtong Mei,Kangning Zhao
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-01-08
卷期号:63 (9): e202318063-e202318063
被引量:51
标识
DOI:10.1002/anie.202318063
摘要
Abstract The aqueous zinc‐ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean‐water ionic liquid electrolyte for aqueous zinc metal batteries. The lean‐water ionic liquid electrolyte creates the hydrophobic tri‐layer interface assembled by first two layers of hydrophobic OTF − and EMIM + and third layer of loosely attached water, beyond the classical Gouy–Chapman–Stern theory based electrochemical double layer. By taking advantage of the hydrophobic tri‐layer interface, the lean‐water ionic liquid electrolyte enables a wide electrochemical working window (2.93 V) with relatively high zinc ion conductivity (17.3 mS/cm). Furthermore, the anion crowding interface facilitates the OTF − decomposition chemistry to create the mechanically graded solid electrolyte interface layer to simultaneously suppress the dendrite formation and maintain the mechanical stability. In this way, the lean‐water based ionic liquid electrolyte realizes the ultralong cyclability of over 10000 cycles at 20 A/g and at practical condition of N/P ratio of 1.5, the cumulated areal capacity reach 1.8 Ah/cm 2 , which outperforms the state‐of‐the‐art zinc metal battery performance. Our work highlights the importance of the stable electrode/electrolyte interface stability, which would be practical for building high energy grid scale zinc‐ion battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI