Using POI and multisource satellite datasets for mainland China's population spatialization and spatiotemporal changes based on regional heterogeneity

空间化 地理 人口 背景(考古学) 地理空间分析 地图学 分布(数学) 城市化 中国大陆 自然地理学 中国 生态学 人口学 生物 数学分析 数学 考古 社会学 人类学
作者
Jinyu Zhang,Xuesheng Zhao
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:912: 169499-169499 被引量:12
标识
DOI:10.1016/j.scitotenv.2023.169499
摘要

Geospatial big data and remote sensing data are widely used in population spatialization studies. However, the relationship between them and population distribution has regional heterogeneity in different geographic contexts. It is necessary to improve data processing methods and spatialization models in areas with large geographical differences. We used land cover data to extract human activity, nighttime light and point-of-interest (POI) data to represent human activity intensity, and considered differences in geographical context to divide mainland China into northern, southern and western regions. We constructed random forest models to generate gridded population distribution datasets with a resolution of 500 m, and quantitatively evaluated the importance of auxiliary data in different geographical contexts. The street-level accuracy assessment showed that our population dataset is more accurate than WorldPop, with a higher R2 and smaller deviation. The improved datasets provided broad potential for exploring the spatial-temporal changes in grid-level population distribution in China from 2010 to 2020. The results indicated that the population density and settlement area have increased, and the overall pattern of population distribution has remained highly stable, but there are significant differences in population change patterns among cities with different urbanization processes. The importance of the ancillary data to the models varied significantly, with POI contributing the most to the southern region and the least to the western region. Moreover, POI had relatively less influence on model improvement in undeveloped areas. Our study could provide a reference for predicting social and economic spatialized data in different geographical context areas using POI and multisource satellite data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的小熊饼干完成签到,获得积分10
2秒前
冷艳的小懒虫完成签到 ,获得积分10
3秒前
李演员完成签到,获得积分10
4秒前
Master发布了新的文献求助10
5秒前
6秒前
dddd完成签到 ,获得积分10
7秒前
秃头小宝贝完成签到,获得积分10
8秒前
奈木扎完成签到,获得积分10
8秒前
莫友安完成签到 ,获得积分10
9秒前
李东东完成签到 ,获得积分10
10秒前
义气凛发布了新的文献求助10
11秒前
思思发布了新的文献求助20
12秒前
mona完成签到,获得积分10
13秒前
17秒前
凡高爱自由完成签到,获得积分10
20秒前
大模型应助怕孤单的思雁采纳,获得10
22秒前
鹿小新发布了新的文献求助10
25秒前
25秒前
hao完成签到,获得积分10
26秒前
70发布了新的文献求助10
26秒前
Xiaoxiao应助无奈的铅笔采纳,获得10
30秒前
31秒前
31秒前
dddd完成签到,获得积分10
31秒前
32秒前
传奇3应助lvsehx采纳,获得10
33秒前
光亮千易完成签到,获得积分10
33秒前
嘻嘻嘻完成签到,获得积分10
34秒前
35秒前
35秒前
蓝色发布了新的文献求助10
35秒前
汉堡包应助dddd采纳,获得10
35秒前
36秒前
38秒前
39秒前
神的女人完成签到,获得积分10
39秒前
lvsehx完成签到,获得积分10
41秒前
Yue发布了新的文献求助10
41秒前
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745