Development and Validation of an Intratumor Heterogeneity–Based Prognostic Model for Clear Cell Renal Cell Carcinoma

作者
Valbert Oliveira Costa Filho,Pedro Robson Costa Passos,Mariana Macambira Noronha,Erick Figueiredo Saldanha,L Park,Carlos Diego Holanda Lopes,Giuseppe G. F. Leite
出处
期刊:JCO precision oncology [American Society of Clinical Oncology]
卷期号:9 (9): e2500709-e2500709
标识
DOI:10.1200/po-25-00709
摘要

PURPOSE Clear cell renal cell carcinoma (ccRCC) is characterized by marked intratumor heterogeneity (ITH), which contributes to therapeutic resistance and poor clinical outcomes. We aimed to develop a robust prognostic model for stratifying patients with ccRCC on the basis of ITH. METHODS RNA-seq data from 522 patients with ccRCC in TCGA-KIRC were analyzed using the DEPTH algorithm to quantify ITH, with external validation in the E-MTAB-1980 cohort (N = 101). Differentially expressed genes between high and low DEPTH tumors were identified, and a machine learning framework was applied to develop the ITHscore. The ITHscore was compared with other published signatures in literature for ccRCC. RESULTS The random survival forest model on the basis of three genes ( UBE2C , MOCOS , and MELTF ) was selected to compose the ITHscore, showing high accuracy in the development (5-year AUC = 0.957) and in the validation cohorts (5-year AUC = 0.82). The ITHscore had the best performance across all 45 retrieved signatures in both development and validation data sets. High-ITHscore tumors exhibited immunosuppressive microenvironments and were associated with immune checkpoint blockade (ICB) resistance signatures. The ITHscore was significantly associated with poor overall survival in five distinct tumor types across a meta-analysis of 104 independent data sets comprising 18,004 patients. CONCLUSION We developed and validated the ITHscore, a three-gene expression–based model with superior prognostic performance in ccRCC. The ITHscore reflects key features of aggressiveness in tumor biology, including immune evasion and ICB resistance. Its minimal gene set and consistent performance across data sets support its potential for clinical implementation in ccRCC stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XJY完成签到,获得积分10
刚刚
wweiweili完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
李美玥完成签到 ,获得积分10
2秒前
火星上醉山完成签到 ,获得积分10
5秒前
apple完成签到,获得积分10
6秒前
7秒前
乔青完成签到,获得积分10
7秒前
fluttershy完成签到 ,获得积分10
10秒前
11秒前
Herrily完成签到,获得积分10
11秒前
wenhuanwenxian完成签到 ,获得积分10
12秒前
12秒前
WWL完成签到 ,获得积分10
13秒前
孙一完成签到,获得积分10
15秒前
火星上的雨柏完成签到 ,获得积分10
16秒前
NMR完成签到,获得积分10
17秒前
XZZH完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
zhangkx23完成签到,获得积分10
21秒前
25秒前
25秒前
sll发布了新的文献求助10
29秒前
29秒前
桃子味完成签到,获得积分10
32秒前
臭皮完成签到,获得积分10
33秒前
儒雅龙完成签到 ,获得积分10
33秒前
倪好完成签到,获得积分10
34秒前
小火苗完成签到 ,获得积分10
34秒前
yyy完成签到 ,获得积分10
37秒前
愉快的溪流完成签到 ,获得积分10
38秒前
39秒前
40秒前
潦草又潦倒完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
44秒前
笨维完成签到,获得积分10
44秒前
Fan完成签到 ,获得积分10
44秒前
任性星星完成签到 ,获得积分10
46秒前
carne完成签到,获得积分10
47秒前
舒心的青亦完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612098
求助须知:如何正确求助?哪些是违规求助? 4696213
关于积分的说明 14890703
捐赠科研通 4731729
什么是DOI,文献DOI怎么找? 2546144
邀请新用户注册赠送积分活动 1510441
关于科研通互助平台的介绍 1473331