拉挤
材料科学
复合材料
热塑性塑料
极限抗拉强度
聚合物
模具(集成电路)
纤维增强塑料
纳米技术
作者
Nawaf Alsinani,Louis Laberge Lebel
标识
DOI:10.1177/08927057221129991
摘要
During thermoplastic pultrusion, increasing the pulling speed generally leads to a melted polymer pressure rise in the pultrusion dies. Yet, it was not clear if the polymer pressure’s increase would result in a faster impregnation flow that would compensate for the lower residency time inside the heating dies. Thus, the aim of this study was to verify if the speed-induced pressure can counterbalance the decrease in residency time that is required for impregnation quality and to analyze possible pultrudate morphology’s reconfiguration. Three distant pulling speeds were selected: namely 50, 500 and 1000 mm/min. Using a model, the polymer pressure in the pultrusion dies was computed to reach up to 1.0, 10.42, and 20.6 MPa for the respective pultrusion pulling speed. The morphology’s characterization showed a reconfiguration of the pultrudate at a higher pulling speed leading to larger unimpregnated agglomerations and polymer rich areas. The highest tensile strength achieved was 233.4 ± 1.5 MPa at 50 mm/min and dropped by around 20% when the pulling speed was raised to 1000 mm/min. The pultrudate reconfiguration at higher speed, attributed to delayed melting of PP fibers in underfilled dies, is deemed responsible for the loss in impregnation and mechanical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI