An explainable deep learning approach for detection and isolation of sensor and machine faults in predictive maintenance paradigm

计算机科学 故障检测与隔离 自编码 卷积神经网络 人工智能 深度学习 梯度升压 人工神经网络 机器学习 断层(地质) 极限学习机 数据挖掘 实时计算 可靠性工程 模式识别(心理学) 工程类 随机森林 地质学 地震学 执行机构
作者
Aparna Sinha,Debanjan Das
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015122-015122 被引量:6
标识
DOI:10.1088/1361-6501/ad016b
摘要

Abstract The predictive health maintenance techniques identify the machine faults by analyzing the data collected by low-cost sensors assuming that sensors are free from any faults. However, aging and environmental condition cause sensors also be faulty, leading to incorrect interpretations of the collected data and subsequently resulting in erroneous machine health predictions. To mitigate this problem, this paper proposes a hybrid model that can differentiate between sensor and system faults. The data used for training the model is collected from a power system hardware setup by experimental procedures. A convolutional neural network (CNN) model is used to extract optimized features from the raw data automatically, which are then fed to the eXtreme Gradient Boosting (XGBoost) model for sensor and machine fault isolation with an overall accuracy of 98.15%. The data having sensor fault was then fed to a deep autoencoder, which eliminated the sensor fault components and reconstructed the data with an average root mean square error of 0.0576. Thereafter, the corrected signal was used to detect the system fault using the hybrid CNN-XGBoost model with 99.77% accuracy. Therefore, by isolating the sensor faults, the proposed technique establishes better confidence in predictive maintenance. Further, explainable AI has been utilized to interpret the model prediction in human-understandable terms in order to increase trustworthiness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助天明采纳,获得10
刚刚
段ddd完成签到,获得积分10
2秒前
汉堡包应助称心涵柳采纳,获得10
3秒前
氧硫硒锑铋完成签到,获得积分10
4秒前
HEAR应助hlxhlx采纳,获得10
10秒前
10秒前
百合骑士发布了新的文献求助10
10秒前
李健应助hahahahahe采纳,获得10
10秒前
13秒前
13秒前
JayChou完成签到,获得积分10
14秒前
天明发布了新的文献求助10
15秒前
16秒前
静静关注了科研通微信公众号
17秒前
17秒前
17秒前
小希发布了新的文献求助10
19秒前
笨笨芯发布了新的文献求助10
19秒前
19秒前
小白菜完成签到,获得积分10
19秒前
20秒前
小蘑菇应助开放灭绝采纳,获得10
20秒前
太阳发布了新的文献求助10
21秒前
orixero应助zyq采纳,获得10
21秒前
21秒前
You发布了新的文献求助10
22秒前
林梓熙发布了新的文献求助10
24秒前
Akim应助宝宝采纳,获得10
25秒前
dwz发布了新的文献求助10
25秒前
nxt发布了新的文献求助10
26秒前
烟花应助笨笨芯采纳,获得10
26秒前
27秒前
30秒前
30秒前
小宝完成签到 ,获得积分10
31秒前
32秒前
太阳发布了新的文献求助10
33秒前
34秒前
薛定谔的键长完成签到,获得积分10
34秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800426
求助须知:如何正确求助?哪些是违规求助? 3345655
关于积分的说明 10326568
捐赠科研通 3062128
什么是DOI,文献DOI怎么找? 1680879
邀请新用户注册赠送积分活动 807263
科研通“疑难数据库(出版商)”最低求助积分说明 763572