FOLT: Fast Multiple Object Tracking from UAV-captured Videos Based on Optical Flow

计算机视觉 人工智能 光流 计算机科学 跟踪(教育) 视频跟踪 对象(语法) 特征(语言学) 目标检测 帧(网络) 匹配(统计) 运动(物理) 模式识别(心理学) 图像(数学) 数学 心理学 电信 教育学 语言学 哲学 统计
作者
Mufeng Yao,Jiaqi Wang,Jinlong Peng,Mingmin Chi,Chao Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2308.07207
摘要

Multiple object tracking (MOT) has been successfully investigated in computer vision. However, MOT for the videos captured by unmanned aerial vehicles (UAV) is still challenging due to small object size, blurred object appearance, and very large and/or irregular motion in both ground objects and UAV platforms. In this paper, we propose FOLT to mitigate these problems and reach fast and accurate MOT in UAV view. Aiming at speed-accuracy trade-off, FOLT adopts a modern detector and light-weight optical flow extractor to extract object detection features and motion features at a minimum cost. Given the extracted flow, the flow-guided feature augmentation is designed to augment the object detection feature based on its optical flow, which improves the detection of small objects. Then the flow-guided motion prediction is also proposed to predict the object's position in the next frame, which improves the tracking performance of objects with very large displacements between adjacent frames. Finally, the tracker matches the detected objects and predicted objects using a spatially matching scheme to generate tracks for every object. Experiments on Visdrone and UAVDT datasets show that our proposed model can successfully track small objects with large and irregular motion and outperform existing state-of-the-art methods in UAV-MOT tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
NexusExplorer应助misalia采纳,获得10
2秒前
关心蕊发布了新的文献求助10
2秒前
皮皮黄完成签到,获得积分10
2秒前
哈伊呀发布了新的文献求助30
2秒前
3秒前
3秒前
希望天下0贩的0应助阿联采纳,获得10
3秒前
wyg117发布了新的文献求助10
3秒前
万能图书馆应助maohui采纳,获得10
4秒前
4秒前
李健应助JAYKING采纳,获得10
4秒前
重要手机发布了新的文献求助10
4秒前
GGG完成签到,获得积分10
5秒前
5秒前
ldy发布了新的文献求助10
5秒前
5秒前
5秒前
英俊的铭应助XMY147305采纳,获得10
5秒前
6秒前
达布溜发布了新的文献求助10
6秒前
6秒前
6秒前
qy发布了新的文献求助30
7秒前
8秒前
Zengyuan发布了新的文献求助10
8秒前
lll完成签到,获得积分10
9秒前
HL完成签到 ,获得积分10
10秒前
Akim应助关心蕊采纳,获得10
10秒前
赫不斜发布了新的文献求助10
10秒前
11秒前
超靓诺言发布了新的文献求助10
11秒前
11秒前
Hohowinnie发布了新的文献求助30
11秒前
11秒前
达布溜完成签到,获得积分10
12秒前
善学以致用应助刘荣圣采纳,获得10
12秒前
13秒前
tang应助超靓诺言采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520913
求助须知:如何正确求助?哪些是违规求助? 3963079
关于积分的说明 12283471
捐赠科研通 3626648
什么是DOI,文献DOI怎么找? 1995825
邀请新用户注册赠送积分活动 1032143
科研通“疑难数据库(出版商)”最低求助积分说明 922326