Dynamic hypergraph convolutional network for multimodal sentiment analysis

超图 计算机科学 成对比较 图形 理论计算机科学 模态(人机交互) 人工智能 仿射变换 数学 离散数学 纯数学
作者
Jian Huang,Yuanyuan Pu,Dongming Zhou,Jinde Cao,Jinjing Gu,Zhengpeng Zhao,Dan Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:565: 126992-126992 被引量:11
标识
DOI:10.1016/j.neucom.2023.126992
摘要

Multimodal sentiment analysis (MSA) aims to detect the sentiments from language (text), audio, and visual (facial expressions) modalities. The main challenge in MSA is how to efficiently model intra-modality and inter-modality dynamics. With the advent of graph convolution network (GCN), graph-based models are proposed to solve the challenge. However, general graphs contain only two nodes per edge, which limits the exploitation of high-order interactions. Moreover, current graph-based models mainly aggregate the features of each node during fusion, while the features of connected edges are not well mined. In this paper, we introduce dynamic hypergraph convolution networks to MSA for the first time and propose a Multimodal Dynamic Hypergraph Network (MDH) to learn intra- and inter-modality dynamics. Hypergraphs provide a natural approach to capture transcendental pairwise relations, and their potential for MSA remains unexplored. MDH mainly consists of three components: Unimodal Encoder, Dynamic Hypergraph Enhancement Network (DHEN), and HyperFusion module. Specifically, DHEN is composed of Cross-modal Affine, Hypergraph Construction, and Hypergraph Aggregation modules. As for the intra-modality dynamics, MDH utilizes Hypergraph Construction and Aggregation modules to model the interactions within time steps for each modality. As for the inter-modality dynamics, MDH implements Cross-modal Affine and HyperFusion modules to learn the relationships of the modalities. In addition, multi-task learning has been implemented to optimize the learning process for multimodal tasks. Experiments show that MDH outperforms graph-based models on CMU-MOSI and CMU-MOSEI datasets, as well as obtains new state-of-the-art results on CH-SIMS dataset. Furthermore, we conduct external experiments to explore the effectiveness of MDH and the effect of model depth with different graph networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上善若水完成签到 ,获得积分10
1秒前
2秒前
今后应助Guoqiang采纳,获得30
3秒前
3秒前
勤劳涵山发布了新的文献求助10
3秒前
4秒前
11发布了新的文献求助10
6秒前
轩辕白竹完成签到,获得积分10
7秒前
9秒前
yc发布了新的文献求助10
10秒前
勤劳涵山完成签到,获得积分10
14秒前
Guoqiang发布了新的文献求助30
14秒前
彭于晏应助邓炎林采纳,获得10
16秒前
gao_yiyi应助绵绵采纳,获得50
17秒前
Qiancheni完成签到,获得积分10
18秒前
Venovenom发布了新的文献求助10
24秒前
科研通AI5应助陈豆豆采纳,获得10
24秒前
完美世界应助smallsix采纳,获得10
28秒前
QIN完成签到,获得积分10
29秒前
yc完成签到,获得积分20
31秒前
31秒前
S.S.N完成签到 ,获得积分10
31秒前
陈豆豆完成签到,获得积分10
31秒前
邓炎林发布了新的文献求助10
35秒前
36秒前
36秒前
善学以致用应助挑挑采纳,获得10
38秒前
星辰大海应助JIA采纳,获得10
38秒前
39秒前
smallsix发布了新的文献求助10
40秒前
情怀应助xixihaha采纳,获得10
41秒前
41秒前
陈豆豆发布了新的文献求助10
42秒前
42秒前
情怀应助安安采纳,获得10
43秒前
小袁发布了新的文献求助10
46秒前
kento应助张二狗采纳,获得200
46秒前
47秒前
shangguanyilin完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825