Roadmap on ferroelectric hafnia- and zirconia-based materials and devices

铁电性 材料科学 工程物理 纳米技术 光电子学 电介质 工程类
作者
José Silva,Ruben Alcala,Uygar E. Avci,Nick Barrett,Laura Bégon-Lours,Bertil Borg,Seungyong Byun,Sou-Chi Chang,Sang-Wook Cheong,Duk-Hyun Choe,J. Coignus,V. Deshpande,A. Dimoulas,C. Dubourdieu,Ignasi Fina,Hiroshi Funakubo,L. Grenouillet,Alexei Gruverman,Jinseong Heo,Michael Hoffmann,H. Alex Hsain,Fei-Ting Huang,Cheol Seong Hwang,Jorge Íñiguez,Jacob L. Jones,I. V. Karpov,Alfred Kersch,Taegyu Kwon,Suzanne Lancaster,Maximilian Lederer,Younghwan Lee,Patrick D. Lomenzo,Lane W. Martin,Simon J. Martin,Shinji Migita,Thomas Mikolajick,Beatriz Noheda,Min Hyuk Park,Karin M. Rabe,Sayeef Salahuddin,F. Sánchez,Konrad Seidel,Takashi Shiraishi,Takahisa Shiraishi,Stefan Slesazeck,Akira Toriumi,Hiroshi Uchida,Bertrand Vilquin,Xianghan Xu,Kun Hee Ye,Uwe Schroeder
出处
期刊:APL Materials [American Institute of Physics]
卷期号:11 (8)
标识
DOI:10.1063/5.0148068
摘要

Ferroelectric hafnium and zirconium oxides have undergone rapid scientific development over the last decade, pushing them to the forefront of ultralow-power electronic systems. Maximizing the potential application in memory devices or supercapacitors of these materials requires a combined effort by the scientific community to address technical limitations, which still hinder their application. Besides their favorable intrinsic material properties, HfO2–ZrO2 materials face challenges regarding their endurance, retention, wake-up effect, and high switching voltages. In this Roadmap, we intend to combine the expertise of chemistry, physics, material, and device engineers from leading experts in the ferroelectrics research community to set the direction of travel for these binary ferroelectric oxides. Here, we present a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading, what challenges need to be addressed, and possible applications and prospects for further development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangqimeng发布了新的文献求助10
刚刚
sananananana完成签到,获得积分20
刚刚
我是老大应助刻苦不弱采纳,获得10
刚刚
刚刚
1秒前
2秒前
屿若发布了新的文献求助10
2秒前
libob完成签到,获得积分10
2秒前
清明雨尚发布了新的文献求助10
2秒前
木兰签应助yoyo采纳,获得10
3秒前
OIIII应助科研通管家采纳,获得20
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
王雨薇应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
xxxx应助科研通管家采纳,获得20
4秒前
sananananana发布了新的文献求助10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
小趴菜应助科研通管家采纳,获得10
4秒前
正直毛豆完成签到,获得积分10
4秒前
SL发布了新的文献求助30
4秒前
4秒前
4秒前
Billy应助科研通管家采纳,获得30
4秒前
4秒前
orixero应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
小趴菜应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933045
求助须知:如何正确求助?哪些是违规求助? 3477828
关于积分的说明 10999541
捐赠科研通 3208305
什么是DOI,文献DOI怎么找? 1772772
邀请新用户注册赠送积分活动 860008
科研通“疑难数据库(出版商)”最低求助积分说明 797451