Drug-detecting bioelectronic nose based on odor cue memory combined with a brain computer interface

气味 光遗传学 神经科学 计算机科学 电子鼻 人口 接口(物质) 局部场电位 医学 心理学 环境卫生 最大气泡压力法 气泡 并行计算
作者
Keqiang Gao,Mengxi Hu,Jiyang Li,Ziyi Li,Wei Xu,Zhiyu Qian,Fan Gao,Tengfei Ma
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:244: 115797-115797 被引量:1
标识
DOI:10.1016/j.bios.2023.115797
摘要

The international drug situation is increasingly, various new drugs are hidden in public places through changing forms and packaging, which brings new challenges to drug enforcement. This study proposes a drug-detecting bioelectronic nose based on odor cue memory combined with brain-computer interface and optogenetic regulation technologies. First, the rats were trained to generate positive memories of drug odors through food reward training, and multichannel microelectrodes were implanted into the DG region of the hippocampus for responsible memory retrieval, the spike signals of individual neurons and the local field potential signals of population neurons in the brain region were collected for pattern recognition and analysis. Preliminary experimental results have shown that when low-dose drugs are buried in a hidden area, rats can find the location of the drugs in a very short time, and when close to the relevant area, there is a significant change in the energy value and time-frequency spectrum signal coupling of the returned data, which can be extracted to indicate that the rats have found the drugs. Second, we labled the neuronal activity marker c-fos and revealed more robust activation in the DG region following odor detection. We modulated these neurons through neuroregulatory technology, so that the rats could recognize drugs by retrieving memories more quickly. We conceive that the drug-detecting rat robot can detect trace amounts of various drugs in complex terrain and multiple scenes, which is of great significance for anti-drug work in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
X7发布了新的文献求助10
1秒前
2秒前
浮游呦呦完成签到,获得积分10
2秒前
庄冬丽发布了新的文献求助10
2秒前
3秒前
3秒前
zhhhhh完成签到,获得积分10
4秒前
5秒前
5秒前
搜集达人应助wxy采纳,获得10
5秒前
乐乐应助CangZm1采纳,获得30
6秒前
zsd完成签到,获得积分10
6秒前
6秒前
7秒前
科目三应助坚强谷雪采纳,获得10
7秒前
7秒前
执着千青发布了新的文献求助10
7秒前
辰风完成签到,获得积分10
7秒前
just驳回了MH应助
7秒前
Mida发布了新的文献求助10
7秒前
西西发布了新的文献求助10
8秒前
8秒前
9秒前
今后应助Unicorn采纳,获得10
9秒前
9秒前
贺岁安完成签到,获得积分10
10秒前
dawei驳回了vvA11应助
10秒前
Orange应助包容的初南采纳,获得10
10秒前
华仔应助轻松蘑菇采纳,获得10
10秒前
风衣拖地完成签到 ,获得积分10
11秒前
11秒前
黎星发布了新的文献求助10
11秒前
11秒前
YY应助庄冬丽采纳,获得10
11秒前
11秒前
11秒前
11秒前
sonder发布了新的文献求助10
12秒前
YAOYAO完成签到,获得积分0
12秒前
所所应助xf采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4193944
求助须知:如何正确求助?哪些是违规求助? 3729791
关于积分的说明 11747376
捐赠科研通 3405042
什么是DOI,文献DOI怎么找? 1868186
邀请新用户注册赠送积分活动 924355
科研通“疑难数据库(出版商)”最低求助积分说明 835357