Broyden–Fletcher–Goldfarb–Shanno算法
趋同(经济学)
拟牛顿法
非线性系统
应用数学
数学
数学优化
功能(生物学)
梯度法
计算机科学
牛顿法
计算机网络
物理
异步通信
量子力学
进化生物学
经济
生物
经济增长
标识
DOI:10.61208/pjo-2023-027
摘要
A globally and superlinearly convergent BFGS methods is introduced to solve general nonlinear equations without computing exact gradient. Compared with existing Gauss-Newton-based BFGS type methods, the proposed method does not require conditions such as sysmmetry on the underlying function. Moreover, it can be suitably adjusted to solve nonlinear least squares problems and still guarantee global convergence. Some numerical results are reported are reported to show its efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI