ImageCAS: A large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images

分割 水准点(测量) 计算机科学 冠状动脉疾病 人工智能 计算机断层血管造影 冠状动脉 比例(比率) 医学 放射科 动脉 血管造影 内科学 地图学 地理
作者
An Zeng,Chunbiao Wu,Guisen Lin,Wen Xie,Jin Hong,Huang Meiping,Jian Zhuang,Shanshan Bi,Dan Pan,Najeeb Ullah,Kaleem Nawaz Khan,Tianchen Wang,Yiyu Shi,Xiaomeng Li,Xiaowei Xu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:109: 102287-102287 被引量:37
标识
DOI:10.1016/j.compmedimag.2023.102287
摘要

Cardiovascular disease (CVD) accounts for about half of non-communicable diseases. Vessel stenosis in the coronary artery is considered to be the major risk of CVD. Computed tomography angiography (CTA) is one of the widely used noninvasive imaging modalities in coronary artery diagnosis due to its superior image resolution. Clinically, segmentation of coronary arteries is essential for the diagnosis and quantification of coronary artery disease. Recently, a variety of works have been proposed to address this problem. However, on one hand, most works rely on in-house datasets, and only a few works published their datasets to the public which only contain tens of images. On the other hand, their source code have not been published, and most follow-up works have not made comparison with existing works, which makes it difficult to judge the effectiveness of the methods and hinders the further exploration of this challenging yet critical problem in the community. In this paper, we propose a large-scale dataset for coronary artery segmentation on CTA images. In addition, we have implemented a benchmark in which we have tried our best to implement several typical existing methods. Furthermore, we propose a strong baseline method which combines multi-scale patch fusion and two-stage processing to extract the details of vessels. Comprehensive experiments show that the proposed method achieves better performance than existing works on the proposed large-scale dataset. The benchmark and the dataset are published at https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue完成签到,获得积分10
1秒前
FAN完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
安的沛白发布了新的文献求助10
4秒前
翻啊翻完成签到,获得积分10
4秒前
呆萌发布了新的文献求助10
5秒前
工藤新一完成签到,获得积分10
5秒前
敬敬完成签到,获得积分10
7秒前
Capybara发布了新的文献求助10
7秒前
Li发布了新的文献求助10
8秒前
8秒前
无花果应助外向静芙采纳,获得10
8秒前
高大绝义发布了新的文献求助10
8秒前
工藤新一发布了新的文献求助10
10秒前
苗条曲奇完成签到,获得积分20
11秒前
11秒前
完美世界应助呆萌采纳,获得30
11秒前
12秒前
13秒前
千a完成签到,获得积分20
13秒前
john发布了新的文献求助10
14秒前
15秒前
16秒前
研友_Z1xbgn发布了新的文献求助10
16秒前
SYX发布了新的文献求助10
18秒前
深情安青应助苗条曲奇采纳,获得10
18秒前
Capybara完成签到,获得积分10
18秒前
sapphire完成签到,获得积分10
19秒前
domkps完成签到 ,获得积分10
20秒前
南宫萍完成签到,获得积分10
20秒前
20秒前
LiMuzi完成签到,获得积分10
21秒前
小楼初晴发布了新的文献求助10
21秒前
bkagyin应助syl采纳,获得10
23秒前
Li完成签到,获得积分10
24秒前
王同学发布了新的文献求助10
24秒前
千a发布了新的文献求助10
25秒前
科研通AI2S应助轩辕德地采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930381
求助须知:如何正确求助?哪些是违规求助? 3475288
关于积分的说明 10986321
捐赠科研通 3205392
什么是DOI,文献DOI怎么找? 1771449
邀请新用户注册赠送积分活动 858995
科研通“疑难数据库(出版商)”最低求助积分说明 796906