Deep learning based weed detection and target spraying robot system at seedling stage of cotton field

深度学习 杂草 机器人 人工智能 领域(数学) 杂草防治 农业工程 计算机科学 机器学习 工程类 数学 农学 生物 纯数学
作者
Xiangpeng Fan,Xiujuan Chai,Jianping Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:214: 108317-108317 被引量:81
标识
DOI:10.1016/j.compag.2023.108317
摘要

The precision spraying robot dispensing herbicides only on unwanted plants based on machine vision detection is the most appropriate approach to ensure the sustainable agro-ecosystem and the minimum impact of nuisance weeds. However, the coexistence of crops and weeds, the similarities of plants and the multi-scale attribute of weeds make reliable detection difficult, leading to serious limitations in the application of deep learning method to target spraying in the field environment. In this paper, 4694 representative images are acquired from cotton field scenario as the data basis for deep learning model. A novel weed detection model is constructed by employing CBAM module, BiFPN structure and Bilinear interpolation algorithm. The proposed network can effectively learn the deep information and distinguish weeds from cotton seedlings in various complicated growth states. Evaluation experiments on our constructed dataset indicate that the proposed method reaches an mAP of 98.43% with faster inference speed than Faster R-CNN. Our proposed weed detection model is also deployed in spraying robot that we developed ourselves, and field trials are conducted for detection and spraying, which could maintain the excellent performance with mAP of 97.42% and effective spraying rate of 98.93%. The ability to successfully execute the weed detection and herbicide spraying management in the field lays foundation for targeted spraying in precision weed control, which has an excellent impact on cotton cultivation and growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wllshr完成签到,获得积分10
刚刚
TGM_Hedwig发布了新的文献求助10
1秒前
冯诺发布了新的文献求助10
1秒前
在水一方应助派大星采纳,获得10
1秒前
1秒前
2秒前
PPIG发布了新的文献求助30
2秒前
Leo发布了新的文献求助10
2秒前
爆米花应助司空晋鹏采纳,获得10
5秒前
Zuguo发布了新的文献求助10
5秒前
共享精神应助俊秀的思山采纳,获得10
6秒前
英姑应助TGM_Hedwig采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
jun完成签到,获得积分10
9秒前
9秒前
Shellbeaze关注了科研通微信公众号
9秒前
10秒前
mengjie完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
笑傲江湖发布了新的文献求助10
13秒前
绵绵冰完成签到 ,获得积分10
14秒前
桐桐应助等待的凝芙采纳,获得10
14秒前
李白发布了新的文献求助10
15秒前
JamesPei应助lofty采纳,获得10
15秒前
xm发布了新的文献求助10
16秒前
浮光发布了新的文献求助10
16秒前
16秒前
哈哈哈哈哈哈完成签到,获得积分10
17秒前
17秒前
18秒前
adding发布了新的文献求助10
18秒前
18秒前
马齿苋完成签到,获得积分10
18秒前
丘比特应助lllppp采纳,获得10
19秒前
222完成签到,获得积分10
19秒前
20秒前
Liugz完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436414
求助须知:如何正确求助?哪些是违规求助? 4548389
关于积分的说明 14214036
捐赠科研通 4468689
什么是DOI,文献DOI怎么找? 2449107
邀请新用户注册赠送积分活动 1440057
关于科研通互助平台的介绍 1416656