Deep learning based weed detection and target spraying robot system at seedling stage of cotton field

深度学习 杂草 机器人 人工智能 领域(数学) 杂草防治 农业工程 计算机科学 机器学习 工程类 数学 农学 生物 纯数学
作者
Xiangpeng Fan,Xiujuan Chai,Jianping Zhou,Tan Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:214: 108317-108317 被引量:25
标识
DOI:10.1016/j.compag.2023.108317
摘要

The precision spraying robot dispensing herbicides only on unwanted plants based on machine vision detection is the most appropriate approach to ensure the sustainable agro-ecosystem and the minimum impact of nuisance weeds. However, the coexistence of crops and weeds, the similarities of plants and the multi-scale attribute of weeds make reliable detection difficult, leading to serious limitations in the application of deep learning method to target spraying in the field environment. In this paper, 4694 representative images are acquired from cotton field scenario as the data basis for deep learning model. A novel weed detection model is constructed by employing CBAM module, BiFPN structure and Bilinear interpolation algorithm. The proposed network can effectively learn the deep information and distinguish weeds from cotton seedlings in various complicated growth states. Evaluation experiments on our constructed dataset indicate that the proposed method reaches an mAP of 98.43% with faster inference speed than Faster R-CNN. Our proposed weed detection model is also deployed in spraying robot that we developed ourselves, and field trials are conducted for detection and spraying, which could maintain the excellent performance with mAP of 97.42% and effective spraying rate of 98.93%. The ability to successfully execute the weed detection and herbicide spraying management in the field lays foundation for targeted spraying in precision weed control, which has an excellent impact on cotton cultivation and growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝贝完成签到,获得积分10
刚刚
Mic发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助天行马采纳,获得10
3秒前
壮观寒荷发布了新的文献求助10
3秒前
现代的马里奥完成签到,获得积分10
4秒前
5秒前
迪仔发布了新的文献求助10
5秒前
liu完成签到,获得积分10
5秒前
6秒前
6秒前
meizi发布了新的文献求助10
7秒前
在水一方应助杨榆藤采纳,获得10
7秒前
Akim应助希伊翁采纳,获得10
8秒前
ky发布了新的文献求助10
10秒前
11秒前
无私迎海完成签到,获得积分10
12秒前
13秒前
冷酷的海亦完成签到,获得积分10
13秒前
hanxi完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
manan发布了新的文献求助10
15秒前
粗心的绾绾应助LaTeXer采纳,获得10
16秒前
loey完成签到,获得积分10
17秒前
17秒前
思绪摸摸头完成签到 ,获得积分10
17秒前
18秒前
天行马发布了新的文献求助10
19秒前
小白菜发布了新的文献求助10
20秒前
乐观之瑶发布了新的文献求助10
20秒前
小伍发布了新的文献求助10
20秒前
Harley发布了新的文献求助10
21秒前
21秒前
HL完成签到,获得积分10
22秒前
整齐乐荷发布了新的文献求助10
22秒前
23秒前
九月完成签到,获得积分10
23秒前
zzz完成签到,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812639
求助须知:如何正确求助?哪些是违规求助? 3357159
关于积分的说明 10385273
捐赠科研通 3074338
什么是DOI,文献DOI怎么找? 1688722
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986