ROP-GAN: an image synthesis method for retinopathy of prematurity based on generative adversarial network

计算机科学 早产儿视网膜病变 人工智能 发电机(电路理论) 鉴别器 人工神经网络 自编码 模式识别(心理学) 计算机视觉 功率(物理) 量子力学 电信 生物 探测器 物理 遗传学 胎龄 怀孕
作者
Ning Hou,Jianhua Shi,Xiaoxuan Ding,Chuan Nie,Cuicui Wang,Jiafu Wan
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (20): 205016-205016 被引量:5
标识
DOI:10.1088/1361-6560/acf3c9
摘要

Abstract Objective . Training data with annotations are scarce in the intelligent diagnosis of retinopathy of prematurity (ROP), and existing typical data augmentation methods cannot generate data with a high degree of diversity. In order to increase the sample size and the generalization ability of the classification model, we propose a method called ROP-GAN for image synthesis of ROP based on a generative adversarial network. Approach . To generate a binary vascular network from color fundus images, we first design an image segmentation model based on U 2 -Net that can extract multi-scale features without reducing the resolution of the feature map. The vascular network is then fed into an adversarial autoencoder for reconstruction, which increases the diversity of the vascular network diagram. Then, we design an ROP image synthesis algorithm based on a generative adversarial network, in which paired color fundus images and binarized vascular networks are input into the image generation model to train the generator and discriminator, and attention mechanism modules are added to the generator to improve its detail synthesis ability. Main results . Qualitative and quantitative evaluation indicators are applied to evaluate the proposed method, and experiments demonstrate that the proposed method is superior to the existing ROP image synthesis methods, as it can synthesize realistic ROP fundus images. Significance . Our method effectively alleviates the problem of data imbalance in ROP intelligent diagnosis, contributes to the implementation of ROP staging tasks, and lays the foundation for further research. In addition to classification tasks, our synthesized images can facilitate tasks that require large amounts of medical data, such as detecting lesions and segmenting medical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武问枫完成签到,获得积分10
刚刚
wyfyq完成签到,获得积分10
1秒前
xiaotaiyang完成签到,获得积分10
1秒前
李爱国应助桃子采纳,获得10
1秒前
2秒前
研友_ZGDQK8完成签到,获得积分10
2秒前
香蕉觅云应助花卷采纳,获得10
2秒前
xiaotaiyang发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
您多笑笑完成签到,获得积分20
4秒前
4秒前
5秒前
adore发布了新的文献求助10
7秒前
充电宝应助西呱呱采纳,获得80
7秒前
8秒前
3977发布了新的文献求助10
8秒前
9秒前
rainhowk完成签到,获得积分10
9秒前
ei发布了新的文献求助10
11秒前
我爱学习发布了新的文献求助10
12秒前
12秒前
顾矜应助sschen采纳,获得10
14秒前
ei完成签到,获得积分10
15秒前
16秒前
16秒前
Orange应助mayberichard采纳,获得10
17秒前
18秒前
18秒前
知性的觅露完成签到,获得积分10
19秒前
20秒前
星辰大海应助我爱学习采纳,获得10
20秒前
脑洞疼应助il701采纳,获得10
20秒前
sunshine完成签到,获得积分10
21秒前
Genius发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
酷炫甜瓜完成签到,获得积分10
24秒前
薄荷完成签到 ,获得积分10
24秒前
24秒前
lJH发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553181
求助须知:如何正确求助?哪些是违规求助? 4637684
关于积分的说明 14650746
捐赠科研通 4579599
什么是DOI,文献DOI怎么找? 2511711
邀请新用户注册赠送积分活动 1486654
关于科研通互助平台的介绍 1457621