已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Efficient Separation and Identification Algorithm for Mixed Threatening Events Applied in Fiber-Optic Distributed Acoustic Sensor

计算机科学 鉴定(生物学) 卷积神经网络 领域(数学) 模式识别(心理学) 人工神经网络 信号(编程语言) 卷积(计算机科学) 人工智能 算法 声传感器 声学 数学 物理 生物 植物 程序设计语言 纯数学
作者
Tao He,Shi-Xiong Zhang,Hao Li,Zhichao Zeng,Junfeng Chen,Zhijun Yan,Deming Liu,Qizhen Sun
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (20): 24763-24771 被引量:3
标识
DOI:10.1109/jsen.2023.3307602
摘要

An accurate and fast recognition of some noticeable threatening events has been proven effective in fiber-optical distributed acoustic sensor (DAS). However, it is still challenging to find an efficient way to realize the accurate potential threats detection and identification. Especially in complicated environments, some weak threatening signals such as manual digging are usually submerged by the strong background noises, in which the influence of these interferences is unavoidable. Unfortunately, these effects of the mixed heavy interferences may cause ignored cases of the alert of potential threats, which even causes significant economic loss. In this work, an accurate and effective multisource signals separation and recognition algorithm is proposed to achieve the identification of the potential threats submerged in multisource noises for fiber optic DAS. First, the overlapping interferences in complicated environments can be effectively denoised by the proposed multisource signals separation algorithm. Then the multiscale features of different signal targets can be automatically extracted and identified by an attention-based multiscale convolution neural network (MS-CNN) model. In the field tests, four types of mixed multisource signals are performed to validate the effectiveness of the proposed algorithm. Finally, the field test results show that the recognition rate of the mixed signals is improved from 53.82% to 95.43% by the proposed algorithm. Besides, the performance of three network models based on the same database is compared. The final results prove that the attention-based MS-CNN model can obtain improved training speed and recognition accuracy, compared with the 1DCNN model and MS-CNN model. The proposed algorithm has an excellent performance for mixed threat identification in various complicated interferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixia完成签到 ,获得积分10
3秒前
12秒前
12秒前
小宋发布了新的文献求助10
13秒前
清图发布了新的文献求助10
17秒前
xiaoguo发布了新的文献求助10
25秒前
26秒前
28秒前
hackfeng完成签到,获得积分10
29秒前
30秒前
100发布了新的文献求助10
31秒前
33秒前
skhhh发布了新的文献求助10
33秒前
37秒前
39秒前
桐桐应助kosang采纳,获得10
40秒前
40秒前
Leoniko完成签到 ,获得积分10
44秒前
ambition发布了新的文献求助10
44秒前
DaLu发布了新的文献求助10
45秒前
子阅完成签到 ,获得积分10
46秒前
小二郎应助super采纳,获得10
47秒前
1分钟前
结实的小土豆完成签到 ,获得积分10
1分钟前
Vintage发布了新的文献求助10
1分钟前
1分钟前
蔡蔡完成签到 ,获得积分10
1分钟前
小蝌完成签到,获得积分10
1分钟前
桐桐应助skhhh采纳,获得10
1分钟前
1分钟前
Ankher完成签到,获得积分10
1分钟前
李十九发布了新的文献求助10
1分钟前
fl发布了新的文献求助10
1分钟前
菜根谭完成签到 ,获得积分10
1分钟前
研友_Zzrx6Z发布了新的文献求助10
1分钟前
1分钟前
12完成签到 ,获得积分10
1分钟前
海蓝鲸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780712
求助须知:如何正确求助?哪些是违规求助? 3326219
关于积分的说明 10226204
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723