Spatiotemporal Patterns of Methane and Nitrous Oxide Emissions in China’s Inland Waters Identified by Machine Learning Technique

一氧化二氮 甲烷 中国 二氧化碳 甲烷排放 环境科学 水质 温室气体 水文学(农业) 气候变化 大气科学 环境工程 环境保护 海洋学 生态学 地质学 地理 生物 考古 工程类 岩土工程
作者
Cheng Yang,Wen Jie Du,Ru‐Li He,Yi-Rong Hu,Houqi Liu,Tianyin Huang,Wen‐Wei Li
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 936-947 被引量:5
标识
DOI:10.1021/acsestwater.3c00064
摘要

The fugitive emissions of greenhouse gases, primarily methane (CH4) and nitrous oxide (N2O), from water environments have aroused global concern. However, there are currently limited information about national-scale data of CH4 and N2O emissions from inland waters, such as lakes, rivers, and reservoirs, particularly in developing countries. This study employed machine learning techniques, based on the literature data and national water quality monitoring data, to reveal the CH4 and N2O emission patterns of China's inland waters at the third-level basin and daily resolution. Our results show significant seasonal variations in CH4 emissions, which were influenced by total nitrogen and chemical oxygen demand concentrations. Northern watersheds were identified as hotspots of CH4 emissions, with 57% higher CH4 flux than the other watersheds. In contrast, N2O had a relatively lower contribution to total carbon emissions and showed smaller temporal and spatial variations. The estimated total emissions of CH4 and N2O in China's inland waters in 2021 amounted to 80.22 Tg of carbon dioxide equivalent, accounting for 9–11% of China's terrestrial carbon sinks. This research provides valuable insights to guide the counting and control of greenhouse gas emissions from environmental water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melone发布了新的文献求助10
1秒前
2秒前
angel发布了新的文献求助30
2秒前
4秒前
别闹闹发布了新的文献求助10
4秒前
syvshc发布了新的文献求助30
4秒前
4秒前
5秒前
冷酷戾发布了新的文献求助10
5秒前
稳重书本发布了新的文献求助10
6秒前
7秒前
yydragen应助Youngyoung采纳,获得30
8秒前
8秒前
LiYuan完成签到,获得积分10
9秒前
9秒前
桐桐应助七八九采纳,获得10
10秒前
zhangyu应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
zhangyu应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
Theprisoners应助科研通管家采纳,获得20
11秒前
zwk给zwk的求助进行了留言
11秒前
Rondab应助wjx采纳,获得10
12秒前
挑片岛屿完成签到,获得积分10
12秒前
情怀应助黄筱妍采纳,获得10
13秒前
搞怪唯雪发布了新的文献求助10
14秒前
不懈奋进应助wyx采纳,获得30
14秒前
14秒前
冯冯发布了新的文献求助10
14秒前
wqx发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005215
求助须知:如何正确求助?哪些是违规求助? 3545034
关于积分的说明 11292297
捐赠科研通 3281370
什么是DOI,文献DOI怎么找? 1809662
邀请新用户注册赠送积分活动 885409
科研通“疑难数据库(出版商)”最低求助积分说明 810888