3D Equivariant Diffusion for Target-Aware Molecule Generation and Affinity Prediction

计算机科学 等变映射 约束(计算机辅助设计) 人工智能 机器学习 数学 几何学 纯数学
作者
Jiaqi Guan,Wesley Wei Qian,Xingang Peng,Yufeng Su,Jian Peng,Jianzhu Ma
出处
期刊:Cornell University - arXiv 被引量:38
标识
DOI:10.48550/arxiv.2303.03543
摘要

Rich data and powerful machine learning models allow us to design drugs for a specific protein target \textit{in silico}. Recently, the inclusion of 3D structures during targeted drug design shows superior performance to other target-free models as the atomic interaction in the 3D space is explicitly modeled. However, current 3D target-aware models either rely on the voxelized atom densities or the autoregressive sampling process, which are not equivariant to rotation or easily violate geometric constraints resulting in unrealistic structures. In this work, we develop a 3D equivariant diffusion model to solve the above challenges. To achieve target-aware molecule design, our method learns a joint generative process of both continuous atom coordinates and categorical atom types with a SE(3)-equivariant network. Moreover, we show that our model can serve as an unsupervised feature extractor to estimate the binding affinity under proper parameterization, which provides an effective way for drug screening. To evaluate our model, we propose a comprehensive framework to evaluate the quality of sampled molecules from different dimensions. Empirical studies show our model could generate molecules with more realistic 3D structures and better affinities towards the protein targets, and improve binding affinity ranking and prediction without retraining.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hmh发布了新的文献求助10
1秒前
yar给ZR14124的求助进行了留言
1秒前
1秒前
善学以致用应助轩辕青文采纳,获得10
2秒前
围城烟火发布了新的文献求助10
2秒前
3秒前
6秒前
1933965800发布了新的文献求助10
6秒前
6秒前
今后应助Much采纳,获得10
8秒前
8秒前
8秒前
9秒前
活力煎蛋完成签到,获得积分10
9秒前
Shawn完成签到,获得积分10
10秒前
Proddy发布了新的文献求助10
10秒前
12秒前
Adrenaline完成签到,获得积分10
12秒前
齐天完成签到 ,获得积分10
12秒前
万能图书馆应助dengdengdeng采纳,获得10
14秒前
执着发布了新的文献求助10
14秒前
轩辕青文发布了新的文献求助10
14秒前
16秒前
远远发布了新的文献求助10
17秒前
Huddy完成签到,获得积分10
18秒前
JamesPei应助yyq采纳,获得10
19秒前
xiaolei完成签到 ,获得积分10
20秒前
阿龙发布了新的文献求助10
20秒前
橙子的远方应助琪琪采纳,获得10
23秒前
执着完成签到,获得积分10
24秒前
搜集达人应助dongpan采纳,获得10
24秒前
24秒前
27秒前
Jingya发布了新的文献求助10
30秒前
搭碰发布了新的文献求助10
32秒前
Jntm应助yar采纳,获得10
33秒前
33秒前
汉堡包应助岚叶采纳,获得10
33秒前
研友_VZG7GZ应助nmamtf采纳,获得10
33秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Sustainability and the Fashion Industry 700
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066408
求助须知:如何正确求助?哪些是违规求助? 3605331
关于积分的说明 11449358
捐赠科研通 3327285
什么是DOI,文献DOI怎么找? 1829277
邀请新用户注册赠送积分活动 899220
科研通“疑难数据库(出版商)”最低求助积分说明 819502