Prediction of Surface Soil Moisture Content using Multispectral Remote Sensing and Machine Learning

多光谱图像 含水量 遥感 环境科学 灌溉调度 灌溉 土壤科学 土壤水分 地质学 生态学 生物 岩土工程
作者
Suyog Balasaheb Khose,Damodhara Rao Mailapalli
标识
DOI:10.5194/egusphere-egu23-7778
摘要

Information on near-surface soil moisture content (SMC) is very important for various applications such as irrigation scheduling, precision farming, watershed management, climate change analysis, drought prediction, meteorological investigations etc. Soil moisture information acquired from remotely sensed satellite data has been widely used in the recent past. However, these remote sensing data's low spatial and temporal resolution is a limitation for agricultural applications. Unmanned aerial vehicles (UAV)-based soil moisture predictions are thriving, but the studies are limited with fewer ground truth data. This study aims to predict the surface soil moisture content using UAV-based multispectral data and machine learning techniques. The UAV-based multispectral data are acquired from an altitude of 40 m. Surface soil samples were collected at an interval of two days to estimate gravimetric soil moisture content. Four machine-learning algorithms (Linear Regression, SVR, RFR, KNN) were used to develop the relationship between near-surface SMC and multispectral data. At high surface SMC, the soil has low spectral reflectance as compared to low surface SMC. The linear regression algorithm performed best, with R2 as 0.89 among the other ML algorithms. Also, blue band reflectance was correlated well with the surface SMC as compared to green, red, NIR and red-edge bands. The findings indicated that UAV-based high-resolution multispectral image analytics could accurately predict the surface SMC. The developed approach of estimation of near SMC may be helpful for farmers and irrigation planners to schedule irrigation and crop management accordingly.Keywords:  Surface soil moisture content; Remote sensing; UAV; Multispectral imageries; Machine learning

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷芷云完成签到,获得积分20
1秒前
科研通AI5应助可可采纳,获得10
2秒前
sparkle完成签到,获得积分10
2秒前
石榴汁的书完成签到,获得积分10
4秒前
wsw发布了新的文献求助10
8秒前
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
shuo0976应助科研通管家采纳,获得30
11秒前
11秒前
keock完成签到,获得积分10
14秒前
烟花应助山城小丸采纳,获得10
18秒前
林莹发布了新的文献求助30
18秒前
something完成签到 ,获得积分10
19秒前
伯赏夏彤完成签到,获得积分10
19秒前
SciGPT应助爱听歌笑寒采纳,获得10
22秒前
111完成签到,获得积分10
22秒前
26秒前
hyshen给hyshen的求助进行了留言
27秒前
30秒前
小王不举铁完成签到,获得积分10
32秒前
33秒前
超级的班完成签到,获得积分10
33秒前
33秒前
hzxy_lyt完成签到,获得积分10
35秒前
超级的班发布了新的文献求助10
37秒前
37秒前
无花果应助香香采纳,获得10
37秒前
38秒前
白白完成签到 ,获得积分10
38秒前
铜锈发布了新的文献求助10
38秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385