亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effective upper and lower bounds for a two-stage reentrant flexible flow shop scheduling problem

流水车间调度 作业车间调度 上下界 计算机科学 数学优化 调度(生产过程) 可重入 整数规划 算法 数学 数学分析 程序设计语言 地铁列车时刻表 操作系统
作者
Shuang Zheng,Zhengwen He,Zhen Yang,Chengbin Chu,Nengmin Wang
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:153: 106183-106183 被引量:3
标识
DOI:10.1016/j.cor.2023.106183
摘要

Flow shop scheduling is important in modern industrial manufacturing to improve production efficiency. This paper studies a realistic two-stage reentrant flexible flow shop scheduling problem (TSRFFS) with broad applications in aircraft scheduling, manufacturing, and the medical industry, etc. Given a flow shop with a single machine in Stage 1, a set of parallel machines in Stage 2, and a set of jobs to be processed, the TSRFFS aims to determine the completion time of jobs in Stage 1 and then that in Stage 2, and finally returns to Stage 1, as well as determine the job-to-machine assignment in Stage 2 such that all jobs are served and the total processing time of jobs (makespan) is minimized. The optimal solution properties are investigated, based on which a mixed integer programming mathematical model and a greedy random constructive heuristic for near optimal solutions are proposed. By solving series of a revised parallel machine scheduling problem (Pm||Cmax), a lower bound method is developed. Extensive numerical experiments on 1560 random instances with up to 1000 jobs and 50 realistic airport simulation instances were conducted to demonstrate the effectiveness of the proposed algorithms. The average gap between the proposed upper bound and the best lower bounds is approximately 1.78%, and the average gap between the proposed lower bound and the best upper bounds is 0.91%, which far outperforms state-of-the-art approaches in terms of solution quality and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maher完成签到,获得积分10
10秒前
m木宁木蒙完成签到 ,获得积分10
10秒前
阿兰完成签到 ,获得积分10
14秒前
22秒前
艾七七发布了新的文献求助10
27秒前
28秒前
38秒前
JACK发布了新的文献求助10
43秒前
小鸟芋圆露露完成签到 ,获得积分10
49秒前
Lucas应助机灵白桃采纳,获得10
53秒前
CodeCraft应助科研通管家采纳,获得10
1分钟前
nenoaowu应助科研通管家采纳,获得10
1分钟前
1分钟前
樊樊发布了新的文献求助10
1分钟前
LY_Qin完成签到,获得积分10
1分钟前
CC1219应助pipi采纳,获得10
1分钟前
1分钟前
机灵白桃发布了新的文献求助10
1分钟前
健康的大船完成签到 ,获得积分10
2分钟前
2分钟前
Saven发布了新的文献求助10
2分钟前
Saven完成签到,获得积分10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
日出完成签到 ,获得积分10
2分钟前
樊樊完成签到 ,获得积分20
2分钟前
pipi完成签到 ,获得积分20
2分钟前
2分钟前
JavedAli完成签到,获得积分10
2分钟前
2分钟前
大模型应助启震采纳,获得10
2分钟前
qq发布了新的文献求助10
2分钟前
2分钟前
启震发布了新的文献求助10
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
启震完成签到,获得积分10
3分钟前
qq完成签到,获得积分20
3分钟前
4分钟前
4分钟前
小蘑菇应助Xuxiaojun采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244117
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483