Network analysis links adolescent depression with childhood, peer, and family risk environment factors

心理学 萧条(经济学) 临床心理学 精神科 发展心理学 宏观经济学 经济
作者
Kangcheng Wang,Yufei Hu,Qiang He,Feiyu Xu,Yan Jing Wu,Ying Yang,Wenxin Zhang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:330: 165-172 被引量:22
标识
DOI:10.1016/j.jad.2023.02.103
摘要

Adolescent mental health is influenced by various adverse environmental conditions. However, it remains unclear how these factors jointly affect adolescent depression. This study aimed to use network analysis to assess the associations between different environmental factors and depressive symptoms in adolescents and to identify key pathways between them. This study included 610 adolescents with depression from inpatient and outpatient units recruited between March 2020 and November 2021. The mean age was 14.86 ± 1.96, with no significant difference between males (n = 155, 15.10 ± 2.19) and females (n = 455, 14.78 ± 1.88). Depressive symptoms were measured using the Children's Depression Inventory, and individual risk environment factors included childhood trauma, social peer and family risk factors. Network features, including network centrality, stability, and bridge centrality, were investigated. Anhedonia and self-esteem were found to be more central in depressive symptoms. Insult experiences from the social peer and emotional abuse experience from childhood were more central environmental factors. Childhood trauma experiences were more related to adolescent depressive symptoms compared to family and peer factors. Bridge analyses identified emotional abuse, emotional neglect and physical neglect as the main bridges linking environment risk to depressive symptoms. This was a cross-sectionally designed study, which limited its ability to examine longitudinal dynamic interactions between environmental factors and adolescent depressive symptoms. Our findings suggested that childhood trauma experiences might have greater psychological impacts on adolescent depression than family and social peer environments, and should be considered as crucial targets for preventing severe depressive moods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心太阳发布了新的文献求助10
3秒前
慕青应助土又鸟采纳,获得10
3秒前
zino发布了新的文献求助10
3秒前
关包子发布了新的文献求助10
4秒前
shaoshao86完成签到,获得积分10
4秒前
6秒前
suga完成签到,获得积分20
6秒前
7秒前
123发布了新的文献求助10
11秒前
11秒前
12秒前
直率虔完成签到,获得积分10
13秒前
伶俜完成签到 ,获得积分10
15秒前
谨慎乌完成签到,获得积分10
15秒前
张晓宇关注了科研通微信公众号
15秒前
Rinsana完成签到,获得积分10
15秒前
pluto完成签到 ,获得积分10
15秒前
刘倩雯发布了新的文献求助10
15秒前
orixero应助zxm采纳,获得10
15秒前
16秒前
关包子完成签到,获得积分10
16秒前
17秒前
chenry发布了新的文献求助10
18秒前
哈哈发布了新的文献求助10
19秒前
火星上仰完成签到,获得积分10
19秒前
chuo0004完成签到,获得积分10
20秒前
20秒前
Mifabric完成签到,获得积分10
21秒前
科研通AI5应助123采纳,获得10
22秒前
鱼遇完成签到,获得积分10
25秒前
27秒前
小巧的巨人关注了科研通微信公众号
28秒前
慕青应助江屿采纳,获得10
29秒前
姚琛完成签到 ,获得积分10
30秒前
32秒前
33秒前
hualin发布了新的文献求助10
33秒前
34秒前
张晓宇发布了新的文献求助10
34秒前
科研通AI5应助大意的念蕾采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382