Sky-image-based solar forecasting using deep learning with multi-location data: training models locally, globally or via transfer learning?

计算机科学 培训(气象学) 学习迁移 天空 基线(sea) 机器学习 深度学习 人工智能 数据挖掘 气象学 地理 海洋学 地质学
作者
Yuhao Nie,Quentin Paletta,Andea Scott,Luis Martín-Pomares,Guillaume Arbod,Sgouris Sgouridis,Joan Lasenby,Adam R. Brandt
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2211.02108
摘要

Solar forecasting from ground-based sky images has shown great promise in reducing the uncertainty in solar power generation. With more and more sky image datasets open sourced in recent years, the development of accurate and reliable deep learning-based solar forecasting methods has seen a huge growth in potential. In this study, we explore three different training strategies for solar forecasting models by leveraging three heterogeneous datasets collected globally with different climate patterns. Specifically, we compare the performance of local models trained individually based on single datasets and global models trained jointly based on the fusion of multiple datasets, and further examine the knowledge transfer from pre-trained solar forecasting models to a new dataset of interest. The results suggest that the local models work well when deployed locally, but significant errors are observed when applied offsite. The global model can adapt well to individual locations at the cost of a potential increase in training efforts. Pre-training models on a large and diversified source dataset and transferring to a target dataset generally achieves superior performance over the other two strategies. With 80% less training data, it can achieve comparable performance as the local baseline trained using the entire dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随性完成签到,获得积分10
1秒前
图图完成签到,获得积分10
1秒前
2秒前
夜雨清痕y发布了新的文献求助10
3秒前
Brave发布了新的文献求助10
7秒前
Davey1220完成签到,获得积分10
11秒前
ningmeng完成签到,获得积分10
13秒前
研友Bn完成签到 ,获得积分10
13秒前
yy完成签到,获得积分10
13秒前
zhaoshasha完成签到,获得积分20
14秒前
20秒前
23秒前
沉默采波完成签到 ,获得积分10
25秒前
czz014发布了新的文献求助10
30秒前
笨笨忘幽发布了新的文献求助10
31秒前
jinghong完成签到 ,获得积分10
32秒前
334niubi666完成签到 ,获得积分10
34秒前
Chandler完成签到,获得积分10
35秒前
科研通AI2S应助WYN采纳,获得10
36秒前
zhoahai完成签到 ,获得积分10
37秒前
畅快芝麻完成签到,获得积分10
38秒前
keep完成签到,获得积分10
43秒前
遇见飞儿完成签到,获得积分10
48秒前
立军发布了新的文献求助10
51秒前
azhou176完成签到,获得积分10
52秒前
53秒前
Hastur00完成签到 ,获得积分10
54秒前
鹏笑完成签到,获得积分10
54秒前
SciGPT应助小天采纳,获得100
54秒前
CC完成签到 ,获得积分10
55秒前
leo完成签到,获得积分10
56秒前
56秒前
找寻四氢叶酸完成签到,获得积分10
57秒前
Thanatos完成签到,获得积分10
57秒前
你香发布了新的文献求助10
59秒前
FR完成签到,获得积分10
1分钟前
haihuhu完成签到 ,获得积分10
1分钟前
浩浩完成签到 ,获得积分10
1分钟前
小绵羊发布了新的文献求助10
1分钟前
guan完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734