Visible-Infrared Person Re-identification with Real-world Label Noise

计算机科学 鉴定(生物学) 噪音(视频) 红外线的 人工智能 计算机视觉 模式识别(心理学) 光学 物理 图像(数学) 植物 生物
作者
Ruiheng Zhang,Zhe Cao,Yan Huang,Shuo Yang,Lixin Xu,Min Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tcsvt.2025.3526449
摘要

In recent years, growing needs for advanced security and traffic management have significantly heightened the prominence of the visible-infrared person re-identification community (VI-ReID), garnering considerable attention. A critical challenge in VI-ReID is the performance degradation attributable to label noise, an issue that becomes even more pronounced in cross-modal scenarios due to an increased likelihood of data confusion. While previous methods have achieved notable successes, they often overlook the complexities of instance-dependent and real-world noise, creating a disconnect from the practical applications of person re-identification. To bridge this gap, our research analyzes the primary sources of label noise in real-world settings, which include a) instantiated identities, b) blurry infrared images, and c) annotators' errors. In response to these challenges, we develop a Robust Hybrid Loss function (RHL) that enables targeted recognition and retrieval optimization through a more fine-grained division of the noisy dataset. The proposed method categorises data into three sets: clean, obviously noisy, and indistinguishably noisy, with bespoke loss calculations for each category. The identification loss is structured to address the varied nature of these sets specifically. For the retrieval sub-task, we utilize an enhanced triplet loss, adept at handling noisy correspondences. Furthermore, to empirically validate our method, we have re-annotated a real-world dataset, SYSU-Real. Our experiments on SYSU-MM01 and RegDB, conducted under various noise ratios of random and instance-dependent label noise, demonstrate the generalized robustness and effectiveness of our proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moooonu完成签到,获得积分10
刚刚
1秒前
传奇3应助gtgyh采纳,获得10
2秒前
SIREN发布了新的文献求助10
4秒前
6秒前
小文殊完成签到 ,获得积分10
6秒前
Orange应助wesley采纳,获得10
7秒前
7秒前
斯文败类应助虚心代亦采纳,获得10
8秒前
猴子大王666完成签到,获得积分10
10秒前
饱满鞅发布了新的文献求助50
11秒前
Monica发布了新的文献求助10
11秒前
11秒前
zx发布了新的文献求助10
11秒前
13秒前
彭于晏应助Hmbb采纳,获得10
15秒前
16秒前
17秒前
17秒前
17秒前
17秒前
19秒前
worker完成签到 ,获得积分10
20秒前
阡陌完成签到,获得积分10
20秒前
21秒前
yj发布了新的文献求助10
21秒前
22秒前
Moonchild完成签到 ,获得积分10
22秒前
23秒前
23秒前
沈小葵发布了新的文献求助10
23秒前
wesley发布了新的文献求助10
23秒前
23秒前
含糊的子默完成签到 ,获得积分10
25秒前
莫听南发布了新的文献求助20
26秒前
追寻书雁完成签到 ,获得积分10
27秒前
27秒前
Master_Ye完成签到,获得积分10
28秒前
28秒前
Hmbb发布了新的文献求助10
28秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848763
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568161
捐赠科研通 3112182
什么是DOI,文献DOI怎么找? 1715103
邀请新用户注册赠送积分活动 825581
科研通“疑难数据库(出版商)”最低求助积分说明 775663