已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Convolutional Neural Networks for the Prediction of Acute Kidney Injury in the Intensive Care

卷积神经网络 急性肾损伤 计算机科学 重症监护 医疗急救 医学 人工智能 重症监护医学 急诊医学 内科学
作者
R van Slobbe,Drahomíra Herrmannová,D J Boeke,Elia Lima-Walton,Ameen Abu‐Hanna,Iacopo Vagliano
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:196: 105815-105815
标识
DOI:10.1016/j.ijmedinf.2025.105815
摘要

Increased monitoring of health-related data for ICU patients holds great potential for the early prediction of medical outcomes. Research on whether the use of clinical notes and concepts from knowledge bases can improve the performance of prediction models is limited. We investigated the effects of combining clinical variables, clinical notes, and clinical concepts. We focus on the early prediction of Acute Kidney Injury (AKI) in the intensive care unit (ICU). AKI is a sudden reduction in kidney function measured by increased serum creatinine (SCr) or decreased urine output. AKI may occur in up to 30% of ICU stays. We developed three models based on convolutional neural networks using data from the Medical Information Mart for Intensive Care (MIMIC) database. The models used clinical variables, free-text notes, and concepts from the Elsevier H-Graph. Our models achieved good predictive performance (AUROC 0.73-0.90). These models were assessed both when using Scr and urine output as predictors and when omitting them. When Scr and urine output were used as predictors, models that included clinical notes and concepts together with clinical variables performed on par with models that only used clinical variables. When excluding SCr and urine output, predictive performance improved by combining multiple modalities. The models that used only clinical variables were externally validated on the eICU dataset and transported fairly to the new population (AUROC 0.68-0.77). Our in-depth comparison of modalities and text representations may further guide researchers and practitioners in applying multimodal models for predicting AKI and inspire them to investigate multimodality and contextualized embeddings for other tasks. Our models can support clinicians to promptly recognize and treat deteriorating AKI patients and may improve patient outcomes in the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助张必雨采纳,获得10
刚刚
研友_VZG7GZ应助charleslam采纳,获得10
1秒前
自由山槐发布了新的文献求助10
2秒前
harri发布了新的文献求助30
2秒前
jackscu发布了新的文献求助10
2秒前
zzmole完成签到,获得积分10
2秒前
小文cremen完成签到 ,获得积分10
3秒前
4秒前
chanyi发布了新的文献求助10
5秒前
深情安青应助2224536采纳,获得10
5秒前
蓝胖子想要两颗西柚-完成签到,获得积分10
5秒前
7秒前
怕黑宝马发布了新的文献求助20
9秒前
YX完成签到,获得积分10
9秒前
10秒前
cy0824完成签到 ,获得积分10
11秒前
Lucas应助zzmole采纳,获得30
12秒前
踏实的天与给踏实的天与的求助进行了留言
14秒前
小zz完成签到 ,获得积分10
14秒前
恒星的恒心完成签到 ,获得积分10
16秒前
17秒前
张必雨发布了新的文献求助10
17秒前
复方黄桃干完成签到 ,获得积分10
18秒前
jackscu发布了新的文献求助10
19秒前
不落完成签到,获得积分10
20秒前
卡皮巴拉完成签到,获得积分20
22秒前
2224536发布了新的文献求助10
22秒前
puhong zhang完成签到,获得积分10
23秒前
wendinfgmei发布了新的文献求助10
24秒前
坚定自信完成签到,获得积分10
27秒前
27秒前
hobowei完成签到 ,获得积分10
28秒前
2224536完成签到,获得积分10
30秒前
喜多多的小眼静完成签到 ,获得积分10
31秒前
leslie完成签到 ,获得积分0
32秒前
就看最后一篇完成签到 ,获得积分10
34秒前
晚和街完成签到,获得积分10
35秒前
jackscu发布了新的文献求助10
36秒前
充电宝应助小晖晖采纳,获得10
40秒前
FFFFFF完成签到 ,获得积分10
41秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085502
求助须知:如何正确求助?哪些是违规求助? 3624524
关于积分的说明 11496693
捐赠科研通 3338631
什么是DOI,文献DOI怎么找? 1835269
邀请新用户注册赠送积分活动 903823
科研通“疑难数据库(出版商)”最低求助积分说明 821971